Many-Facet Rasch Measurement : Facets Tutorial

# . .
Mike Linacre - 1/2012
1. | Tutorial 2. Fit analysis and Measurement Models
Welcome back!
e Observations, expectations and residuals
e Quality-control fit statistics elements and observations
e Reliability indexes and inter-rater reliability
This tutorial builds on Tutorial 1, so please go back and review when you need to.
2. | A. Facets Specifications and Data: The Knox Cube Test
3. | Let’s launch Facets again @
ﬂ-.-
4. | To start with we’ll look at an analysis that’s about as simple as c rm————
it gets: 2-facets, dichotomous. SEme e e ||
Click on “Files” ey Cirl+F
. . . . Save progress repol Ctrl+5
Click on “Specification File Name?” Restart: facets
Facform:
5. | Click on “Kct.txt” and “Open” "
. 2l
or Double-Click on “Kct.txt” P 5 ~mom
“Extra Specifications” - click on “OK” S o Duosn
. . Creativity.txt ettt
“What is the Report Output file name” - click on “Open” Sovne £ fromeean
. . . . ) Essays.oxt ] Mleas2anc.brt
This is the “Knox Cube Test” data in “Best Test Design” iy R | it
(Wright & Stone, 1979, MESA Press). D oot B oo
. ) essayss3.txt portcas.bet
The Knox Cube Test was devised by Dr. Howard Knox on Sl
Ellis Island in New York harbor (next to the Statue of Liberty). Fie are :mm 3 > o |
. . .. . Files of type Specificaton (*bd) - Cancel
It was used to screen immigrants arriving by ship from P b
Europe. It assesses attention-span and short-term memory.
6. | The Estimation and initial reporting completes. B
. . . . Table 7.2.3 Tapping items Measurement Report {arranged by N)
We will be particularly interested in Table 4.1 “Unexpected Table 8. Category Statistics
Responses”, but first let’s look at what this analysis is all about | [Eis 2.2 Ssesecred sespencs 0 seordiatc omced by v |
Subset connection O.K.
Output to C:\Facets\Examples\Kct.out.txt
7. | Click on “Edit” menu
. . . . Files | Edit t Estimation OQutput Tables & Plots OQutpul
Click on “Edit Specification = ... Kct.txt” e e e
I Y Edi Report Output = C:\Facets\Examples\Kct.out.txt
] Edit = C:\Facets\Examples\Kct.txt
8. | We know what most of this means:

; starts a comment. | wanted to mention “Kct.txt”, the name of
the specification file.

TITLE= is title line at the top of each output table

Facets = 2 - there are two facets: children and items

Fle Edit Format View Help

; Fot.txt
TITLE="Enox Cuobe Test (Best Test Design p.31)"
Facets = 2 ; two facets: children an



http://www.rasch.org/btd.htm

9. | Positive = I - the first facet (children) have positive ability:
) .
more Score = more measure. The second facet, items has the e e
default setting, negative difficulty, more score = less measure. T Rot et
You have probably realized that the order of the specifications | |[TITLE="Knox Cabe Test (Best Test Design p-31)'
doesn’t matter, except that we need to specify Facets= early in | |eesitive =1 ; for facet 1, children,
. . ; only facet 1, children,
the specification file.

10. | Noncenter=1
Something that must be decided in all measurement is where to measure from. For short distances, we
measure length from the end of the tape measure. For mountains, from sea level. For temperature, from
freezing point of water for Celsius, but from freezing point of salt water for Fahrenheit. It is the same in
Rasch measurement. The measuring convention is that we measure from the center (mean) of the
measures for each facet. So item difficulties are measured from the center, the local origin, of the item
facet. The average item has a difficulty of 0 logits. Judge severities are measured from the center, the
local origin, of the judge facet. The average judge has a severity of 0 logits. We do this for all facets
except one, usually the person ability facet. The person abilities are measured from the local origins of
all the other facets. If the average ability is high, then the average person has a positive logit measure. If
the average ability is low, then the average person has a negative logit measure.

So all facets have their local origin at their centers, except one facet.
Noncenter=1 ; the first facet (children) does not have its local origin at its center.

11. | Pt-biserial = Yes - report the point-biserial correlation in the Pt-biserial = Yes ; report
measure tables, Table 7. These may not make much sense if Vertical=1+*,1A,2N,2A ; show ct
the data are incomplete (so there are missing observations). Yard=112,4 ; Vertice
This dataset is a complete rectangular dataset. Model = 2,2,D ¢ element

. . . . Labels =
Vertical = this controls the facets to display in Table 6, the 1,Children . Childre
vertical rulers. 1-17=Boy, ,1 ; Pretenc
Yard = this controls the size of the display in Table 6. 18-35=Girl, ,2 : Pretenc
Recommendation: Use the Output Tables pull-down menu to * ; end of
play with different settings of Vertical= and Yard= for Table 2,Tapping items i Items z
6, until you find settings that you like. 1=1-4 ; Items 1

12. | Model = ?, ?, D
There is only one model specification, so it can be on the same line as Model=. “?”” means “any element
of the facet”. The first “?” is for facet 1. The next “?” is for facet 2. So this model specification says:
“Any element of facet one can combine with any element of facet two to produce an observation on a D-
type scale”. “D” means “dichotomous 0-1 scale”. So Facets expects to see 0’s and 1’s in the data file.
Anything else is treated as a missing value and ignored.

13. | Labels = defines the facet names and the elements in the facets.

1, Children - the label or name of the first facet is “children”

1-17=Boy,, I - after the facet name comes the list of elements. In this facet, element numbers 1 to 17 are
all labeled “Boy”. They could be given individual labels if desired. «,,1” means “the boys are part of
element group 1”. So a measure Table with totals will be produced for the boy group.

18-35=Girl,,2 - element numbers 18 to 35 are all labeled “Girl”. They could be given individual labels if
desired. “,,2” means “the girls are part of element group 2”. So a measure Table with totals will also be
produced for the girl group.

* - element lists end with “*”




14. | 2, Tapping items - the label of the second facet is “Tapping items”. The Knox Cube Test requires the
participants to tap on items, (see Optional Reading at #178).

1 = -4 - the first item is labeled “1-4”. That item requires the children to tap cube 1 and then cube 4.
Recommendation: Choose item-labels that are meaningful to you, so that the Facets reports and maps
have a useful message.

15. | 18=4-1-3-4-2-1-4 is the last item label. The pattern has 7 taps.

* ends the element list and the facet list 18=4-1-3-4-2-1-4 _
Data= starts the data ' ; end of item lab
An example of entering the data one observation at a time: Data = ; o data file na
1,1,1 - facet 1 element 1 combines with facet 2 element 1 to 11 1 ; child 1 on item
produce an observation of 1. 1,2-18,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0
An example of entering the data using indexing: ?,1-181,1,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0
1,2-18,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0 — facet 1 element 1 3,-181,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0
comb1ne§ with facet 2 elements 2 to 18 to produce 4,1-18,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
observations of 1 (for facet 2 element 2), of 1 (for facet 2 5 ,1-18,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0
element 3), ....,OfO (forfacet2element 8), ....... ,OfO (for 6,-18,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
facet 2 element 18)

16. | Let’s use indexing from here on ... . 32.,1-18,1,1,1,1,1,1,1,1
35, '1-118, l,ld,'l,l,t...:[}; t}ie gblse_rvellctlo?s f(;rzfa(l:et 1 eseriu:nt1385 33,1-18,1,1,1,1,1,1,1,1
giegllriacclzoilngo e Labels=) for facet 2 elements 1 to 18, 34,1-18,1,1,1,1,1,1,1,1
The Data= instruction ends at the end of the file. 35,1-18,1,1,1,1,1,1,1,1

17. | Take a look at the data. Which observations accord with the Data = ; no data file nam

: : : : : 1,1 1 ; child 1 on item

Rasch quel and Whlch observations contradict it? It is L 2181,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0
usually difficult to judge by eye. 2 ,1-18,1,1,1,1,1,1,0,0,1,1,1,0,0 ff} 0,0,0,0
red box: I’ve marked an observation that might be a “lucky” 3 ,1-18,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0
9 1 1 1 4 11_131141v11111r111v1r1r1r0r0fDrUrOlOlDfD
success .... but I mngt sure. It is for child 2, item 14. ‘ 5 1-18.1.0.0.0.1.0.0.0.0.1.0.0.1.1.0.0.0,0
blue box: Can you pick out an “unlucky failure”? We will see 6 ,1-18,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
how good we are doing misfit detection by eye .... 7,1-18,1,1,1,1[@0,1,0,1,0,0,0,0,0,0,0,0,0
) . ; o 8 ,1-18,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0
green box: another lucky guess for child 9, item 137 9 ,1-18,1,1,1,1,1,1,1,1,1,1,0,0[L]0,0,0,0,0

18. | Now close the Kct.txt Edit window. x|

19.




20. | B. Table 6: The Knox Cube Test Measures

21. | Let’s produce a version of Table 6, the vertical rulers [
which tells us what we will need to know. on | Output Tables &Flots OutputF
In the main Facets window, g
click on “Output Tables & Plots”
click on “Table 6: Vertical Rulers” Table 7: Measures

22. | Kct.txt has: “Vertical=1* 1A,2N,2A” =T
But we want to display the first facet, the children, by Table 6: Vertical Measure "Rulers"
element number: lN Type "Vertical=" specification: —
the second facet, the items by element number, 2N .
and by element label (the tapping pattern) 2A - O ] | "
so the specification is: j ; e s} sk ar -
Vertical = lN, ZN, 2A 1 — Highaslnumherunv.erﬁcalmler
\;Ve (?anlsp{c)mfy this by typing 1N, 2N, 2A in the ' Options: e

ertlca — OX. . ¥ Output summary barcharts Al

Then click on “Temporary Output File” [

23.| Table 6 displays. In NotePad:
At first it was too big for my screen and somewhat faint, 2[x|
so (just like in Tutorial 1) I went to the NotePad menu Font — —
bar, and used the Format pull-down menu to change the | [ucidsConsoe s J—Pp ok |
Font 'and the Size. Mine is "‘Courier New’.’ 8-p0int. g e e D : j Cancel
For sizes smaller than 6 points, type the size into the Bold 10

. () Lucida Handwriting 1 |Bold lalic 11

NotePad font size box. () Lucida Sans Unicode 12

24. | In Table 6, at the extreme left is the measurement scale,

“Measr”, in logits. It is -5 to +5, a typical range. This is
not pre-set. It is estimated from the pattern of the data.

blue box: The children are shown with many of them
just below 0 logits. This is the mode of their distribution.
The column heading is “+Children”. “+” means “more
score <> more measure”. So the most able (highest
scoring) children are at the top. They are 27 and 30.

In the third column, the items are shown by element
number. The fourth column shows them by label. The
column is headed “-Tapping items”, so

“more score <> less measure.”
The lowest scoring items (least success by the children)
are at the top. These are the most difficult items. The
easiest items are at the bottom.

|-Tapping i|-Tapping items

-1-3-4-2-1-4

18 4
15 16 17 J1-3-2-4-1-3
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25.

Do you notice any flaws in this version of Knox’s test? Here is one ...
Red box in #24: There are 12 children in the middle of the range (children 2, 3, 4, 13, ...), but no items at
their level. If the test is intended for children like those in this sample, it needs more middle-difficulty

items. Can you imagine some extra items that might go in the red box in #24? They will be more

difficult than the items below the red box, but easier than the items above the red box.
green box: Now look at the top of the item columns. There are 4 items that are much too difficult for

this sample.

orange box: And at the bottom there are three items that are somewhat too easy. These extreme items
waste everyone’s time, and they may make the children frustrated or over-confident.
In their book, “Best Test Design”, Wright & Stone improve this test.

26.

C. Table 6: Measures and Expectations

27.

Now look at person 5 in #24. His measure is +2 logits.
What do we expect to happen when he encounters item
13, also at +2 logits ? The child has the same ability as
the item has difficulty. We don’t know what will
happen. The child’s probability of success is 0.5

+ 2;ﬂ5 14 31

28.

What about when child 9 of ability +1 logits attempts
item 13 of difficulty +2 logits. Child 9 is less able than
the item is difficult so the child will probably fail. But
what is the child’s exact probability of success? .4, .3, .7

2+5
|

+
|
| |
|
+

I
1 Em 11 19 35

6 14 31

b———

1-4-3-2-4

b—_——t

29.

We can compute the probability of success from the
Rasch model for dichotomous observations (Tutorial 1).
Let’s fill in the values: B, =+1, D;=+2

loge(Pni/(l-Pni)) = Bn - Di
108e(Prif(1-Pyi)) = +1 - +2 = -1

30.

Rearrange the algebra. (If you are not sure about “e”,
please review Tutorial 1, Appendix 3).

31.

The probability of success when child 9 of ability +1
logits attempts item 13 of difficulty +2 logits is p = .27.

Pp=c'/(1+eh)

=1/2.718/(1+1/2.718)

=0.37/137=.27

=1 success in every 4 attempts

32.

Logit-to-Probability Conversion Table
Here is a Table to guide you when you convert
dichotomous logit differences into percents (or
probabilities) of success.

green text: Our difference is -1 logits. Look half-way
down the right-hand pair of columns. -1.0 logits is 27%
chance of success, which is the same as p=.27.

Notice these useful values:

1.1 logits difference = 75% chance of success
2.2 logits difference = 90% chance of success
3.0 logits difference = 95% chance of success

Logit

diff. % Success

5.0 99% -5.
4.6 99% -4,
4.0 98% -4,
3.0 95% -3.
2.2 90% -2.
2.0 88% -2.
1.4 80% -1.
1.1 75% -1.
1.0 73% -1.
0.8 70% -0.
0.5 62% -0.
0.4 60% -0.
0.2 55% -0.
0.1 52% -0.
0 50% -0.

O DN UITOOREPONOO OO

1%

1%

2%

5%

10%
12%
20%
25%
27%
30%
38%
40%
45%
48%
50%




33.

We have the logit measure for every child and every
item. They are displayed in Table 6 (pictorially) and
Table 7 (numerically). So we can use the Rasch
dichotomous model to compute probability of success
for every child on every item. These probabilities are the
“expected” observations.

For dichotomous, 0 or 1, data,
probability of success —
the expected value of the observation

34.

Think of this in terms of frequency. What would we
expect if 100 people of the ability of child 9 attempted
item 13?

100 attempts at item 13 by ability of child 9.
Logit difference = -1, Percent success = 27%
Expect: 27 successes out of 100 attempts
Expected value of 1 attempt = 27/100 = .27 =
Rasch-model probability of success

35.




36.

D. Rasch Theory: Observations, Expectations and Residuals:
Response-level fit of the data to the Rasch model

37.| Here is the Knox Cube Test data again: Data = ; no data file nan
1.1 1 ; child 1 on item
.. . . . i ,2-18,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0
ThepI'lIICIPICSOfﬁt are easier to explaleth 2 ,1-18,1,1,1,1,1,1,0,0,1,1,1,0,0 0,0,0,0
dichotomous data than with polytomous data, so that is 3 ,1-18,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0
why we are starting here 4 ,1-18,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0
: 5 ,1-18,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0
6 ,1-18,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
7 ,1-18,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0
§ ,1-18,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0
9 ,1—13,1,1,1,1,1,1,1,1,1,1,0,0“0,0,0,0,0
38. | Child 9, item 13, is marked in green. The child scored the observation:
“1”, a success! Xni = Xo,13=1
39. | We’ve already discovered in #28 that Child n=9 (ability the expectation =
b =1 logit) is less able than item i=13 (difficulty d = 2 Epi = Py = " Y(1+e"9)
logits): b-d=-1, Py =0.27 =e¢'/(1+e')=027
40. | The difference between the observation and its .
L. o . s i .. the residual:
expectation is the “residual” (what is left over). This is R =X. -F-=1-027=073
the part of the observation we did not expect to see ... e : '
41. | We know that what we will see in the KCT data are 0’s and 1’s, but they are not the expected values.
The expected values are numbers like .68 and .34. So there are almost always residuals.
There is a further question to ask, “Are we surprised about the size of the residual, or is it about the size
of the discrepancy we were expecting to see?”
There are two aspects to what we expect:
1. The expected (average) value.
2. The expected variation of the observed around its expected value. This is called the “model
variance”.
Think of 100 people like child 9 attempting item 13. We expect 27 successes. The expected (average)
value is 27/100 = .27. But we also expect to see 27 1’s and 73 0’s. So there will be residuals!
Here is a technical computation:
the sum-of-squared-residuals = sum of (observation - expectation) >
= (count of successes)*(success - expected value)® + (count of failure)*(failure - expected value)?
= (success count)*( 1 - expected value)® + (failure count)*(0 - expected value)®
=27%(1 - 27)* +73%(0 - 27)* =27 * .73 + 73 * 27 = 100 * .27 * .73 = 19.71
the model residual variance = V,;; = sum-of-squares / count of residuals
V,i =19.71/100= 0.1971
the model residual standard-deviation = square-root (variance) = \/(Vni) = \/(0. 1971)=0.44
= the size of the splatter of the observations around their expected values.
42. | With these numbers, we can calculate how unexpected

is our residual, Ry; . The standardized residual, Z,; , is as standardized residual =
unexpected as the unit normal deviate [see Appendix 1. Zi = Rui / (Vi)
Unit Normal Deviates of this tutorial].




43.

In our example, X;39=1, the residual Ry = 0.73, the
residual S.D. = 0.44, so that the standardized residual,
Z.i, 1s 1.66. This is as unusual as a unit normal deviate
of 1.66, p = .10 (see Table in Appendix 1), but not
unusual enough (p<.05) to be considered significantly
misfitting the Rasch model.

Ry =0.73, Vi = 0.1971, V(Vyi)=0.44,
Zni=0.73/0.44 =1.66;p ~.10

44.

Now let’s look at the observation I ringed in red in #37:
Child 2 on item 14. According to Table 6 (see #24),
Child 2 has an ability of about -0.25 logits. Item 14 has a
difficulty of about 3.37 logits.

Logit difference (child - item) =
-0.25 - 3.37 = -3.6 logits
Probability of success (Table in #32) = 3%

45.

We observed a success, so X, = 1.

Expectation = 3% success = .03 (we are rounding the
computations 2 decimal places for clarity)

Now we can compute the residual and the standardized
residual.

The residual, Ry;, is .97 (very large)

and the standardized residual, Z;, is 5.60 (very
unexpected), p<.01.

Observation: X,; = 1
Expectation: E,i = Py, = .03
Residual: Rni = Xni - Eni =1-.03=0.97
Model variance of the observation around its
expectation:

Vi = Ppi*(1-Py) =.03*.97 = .03
Standardized residual:

Zoi = Ry N( Vi ) =0.97 N(.03)=5.60

46.

E. Table 4: Unexpected Responses

47.

We could go through this computation by hand for every
observation, but it is easier to have Facets do it for us.
Click on the Facets Report output file on your Windows
Taskbar

(or click on Facets “Edit” menu, click on “Report output
file”)

Scroll down to Table 4. It is the last Table. It shows the
unexpected responses (or unexpected observations)

48.

Green box: Facets has done the computation for Child 2
on Item 14 more precisely than I did. It reports that the

standardized residual (StRes, Z,;) is 6.2. This is the most
unexpected observation in these data. The observation is
unexpectedly high (1) compared with its expected value

(.0)

Fnox Cube Test (Best Test Design p.31) 4/23/2009 3:12:00 AM
Table 4,1 Unexpected Responses (7 residoals sorted by um).

4-- --- --- --- --- ———m——t
| Cat Soore Exp. Resd StRes| Nu Chil o Tapping items |

1

0 1.0 -1.0 -6.1 | 2 Boy

] 1.0 -1.0 -6.1 | 24 Girl
0 1.0 -1.0 -4.8 | 24 Girl &
1
1
]

A 9 3.5 | 24 Girl 12 1-3-2-4-3
d .9 3.5 | 33 Girl 12 1-3-2-4-3
5 -9 -3,5 | 28 Girl 35 2-1-4 |

Cat Score Exp. Resd StRes| Nu Chil No Tapping items |

49.

Red box: Look at the next two observations listed in Table 4. Both are on item 7 and they are equally
unexpected StRes = -6.1. The minus - sign means “they did worse than we expected.” Both children, 2
and 24, failed on the item when we expected them so succeed. We don’t know why, but if we were
serious about the children or the instrument we might inquire. The tapping pattern includes the sequence
4-3-2. Perhaps the examiner sped-up unintentionally, or perhaps he didn’t clearly tap each cube so the

children saw 4-2 instead of 4-3-2.

The list of unexpected responses nearly always contains useful messages about the instrument, the

sample, the judges, the dataset, or whatever .....




50.

F. Table 7: Quality-control fit statistics elements and observations

51. | Looking down the list of unexpected responses is somewhat like looking at the pot-holes in a road. You
want to pay some attention to them (not too much, usually), but they don’t tell you much about the
surface of the road as a whole. For that we need to take a wider look.

52. | Scroll back up the Kct.out.txt Report Output file to Table 7.2.2. - the measure Table for Items in fit
order, descending, or output a new copy of Table 7 from the “Output Tables” menu.
red box: You will see 4 columns: Infit and Outfit, MnSq and Zstd. These are quality-control fit statistics.
They are central to the evaluation of the quality of the data for the construction of measures.

53 Table 7.2.2 Tapping items Measurement Report (arranged by fN) .

’ +--—— -_—— —-_ = —————————— - ———————————————————— +
| Total Total Cbhsvd Fair—-M]| Model | Elfit outfit \ Estim.| Corr. | |
| Score Count Average Avrage |Measure S.E. |[MnSg ZSstd MnSg EStdfDiscrm| PtBis | Nu Tapping items |
| mm + —_—— - e e |
| 31 35 9 .98 -32.87 .71 (f1.25 .8 2.30 1.2 .52 | .30 | 7 1-4-3-2 |
| 3 35 1 .03 3.40 .70 |f1.59 1.2 1.532 1.0 -60 | -.0% | 14 1-4-2-3-4-1 |
| 30 35 3 96| —3.41 .65 |f1.18 .5 .98 .6 .86 | .43 | & 3-4-1 |
| 3] 35 2 .08 2.25 .33 |[f§1.17 .6 1.07 -3 .82 | .26 | 12 1-3-2-4-3 |
| 24 35 7 .80] -1.58 .49 |f1.07 .2 .84 .0 .96 | .46 | 10 2-4-3-1 |
| 12 as a4 .27 .80 .45 |f1.08 .4 .79 —.1 .96 | .37 | 11 1-3-1-2-4 |
| 31 35 3 .@8| -—-3.87 .71 |f1.05 .2 .53 el 1.00 | .47 | 5 2-1-4 |
| 27 35 8 .50 —2.37 .24 | -52% -1.3 .43 —-.2 1.35 | .65 | 8 1-4-2-3 |
| 7 35 .2 .10] 1.56 .53 || .70 -1.0 .38 —.z2f 1.24 | .44 | 13 1-4-3-2-4 |
| az as ) .99 —4.45 gz || .91 .0 .35 .af 1.08 | .48 | 4 1-3-4 |
| 30 35 9 96| -—-3.41 .65 || -e2 -1.0 .21 .ol 1.34 .63 | 9 1-3-2-4 |
| 1 35 o o1 4.85 1.08 | .76 -0 =11 1.4 1.18 | .24 | 15 1-3-2-4-1-3 |
| 1 35 o o1 4.85 1.08 | .76 -0 =11 1.4 1.18 | .24 | 16 1-4-2-3-1-4 |
| 1 as o 011 4.85 1.08 |% .76 .0 .11 1. 1.18 | .24 | 17 1-4-3-1-2-4 |
| 35 35 1.0 1.00]( —6.64 1.86) |MITT———— | _00 | 1 1-4 |
| 35 35 1.0 1.00]1( —6.64 1.86) |[Minimum | | oo | 2 2-3 |
| 35 35 1.0 1.00]1( —6.64 1.86) [Minimum | | oo | 3 1-2-4 |
| o as o 001 ( €.18 1.86) |[Maximum | | 00 | 18 4-1-3-4-2-1-4 |
| ——————————————————————————————— —_— -_————- . ————————— = +—-—————— +-—————- +-——————— |

54. | How well do the observations of each element fit with the estimate of the its measure?

If the fit is good, then we can have confidence that the measure means what it says.

If the fit is bad, then the measure could mislead us.

If the fit is too good, then perhaps something is constraining the data to be too coherent.

If the fit is too bad, then those data could also be damaging the measures of other elements.

55. | So we have the process of fit evaluation. In Facets, most fit Data — Measure Estimates —
statistics are based on summarizing the residuals that we’ve Expected Data — Residuals —
already thought about one at a time. Fit statistics —

Validity of Measure Estimates

56. | Imagine that we administer a dichotomous test in which the

items are ordered from easy to difficult. What would we expect
would happen when a typical person takes the test?

Success on the easy items =1 Failure on the hard items ‘=

And a transition zone @ where the items are about as difficult
as the person is able, so we expect to see some successes and
some failure.

This is what has happened with the top left response-string in
the Table in #Error! Reference source not found.:
“1110110110100000”. And this is also the pattern that the
Rasch model predicts: “There is nothing so practical as a good
theory” (Kurt Lewin, 1951, p. 169)

Person Responses:
Easy -- Items -- Hard
1110110110100000




57.

So, how can we verify that this response string does match Rasch expectations? We do this using mean-
square fit statistics. A mean-square is a chi-square divided by its degrees of freedom /[see Appendix 2. if
chi-square sounds like Greek to you ...J]. Let’s start with chi-square fit statistics ....

S8.

Chi-square fit statistics are very useful for diagnosing the standardized residuals. The standardized
residuals are modeled to be unit normal deviates. So when we square them and sum them, we expect
their sum will approximate a chi-square distribution with mean equal to the count of the standardized
residuals.

If the chi-square value is much above the count, then the standardized residuals are further away from 0,
on average, than the Rasch model predicts. The observations are farther from their expectations than the
Rasch model predicts. The data are too unpredictable, “noisy”. They “underfit” the Rasch model.

If the chi-square value is much below the count and so much closer to zero, then the standardized
residuals are closer to 0, on average, than the Rasch model predicts. The observations are closer to their
expectations than the Rasch model predicts. The data are too predictable. The unexpectedness in the data
is “muted”. The data “overfit” the Rasch model.

The value of the chi-square, along with its degrees of freedom, enable us to compute how unlikely these
data are to be observed by chance when the data fit the Rasch model. When we deem the data too
unlikely to have occurred by chance, then we declare that “the data misfit the model”.

59.

Chi-square statistics are useful for quantifying the chi-square x* / degrees of freedom (d.f))

fit of the data to the Rasch model, but we can = mean-square (MnSq)

make them even more convenient. The expected mean (expectation) of MnSq = 1.0
mean of a chi-square distribution is its “degrees of model variance of MnSq =2/ d.f.
freedom”, the number of independent squared standard deviation of MnSq = V(2/d.f)
unit-normal distributions it represents. If we

divide a chi-square value by its degrees of The expected value of a mean-square is 1.0
freedom, then we have a mean-square value.

60.

G. Rasch Theory: “The data misfit the model!” ‘=

61.

Are you surprised by that statement? Many statisticians would be. Descriptive statistics are based on
summarizing the data efficiently and parsimoniously. The data are considered to be the given (Latin
“datum”) truth. The statistical model (regression, ANOVA, etc.) is intended to describe the dataset. So a
good descriptive statistical model is one which fits the data. If the model misfits the data, then try a
different descriptive model.

Rasch is a prescriptive statistical method. The Rasch model gives us what we want (additive measures
in a unidimensional framework), so it is our “truth”. The data may, or may not, contain the information
that we need. So good data fit our Rasch model. If the data don’t fit the model usefully, then the dataset
as a whole doesn’t support unidimensional measurement. Some part of the dataset may. In fact, usually
most of a dataset does, if it is intended to capture one latent variable.

Thought: Raw scores are the “sufficient statistics” for a Rasch analysis. If the dataset doesn’t conform to
Rasch analysis, then it doesn’t conform to raw-score analysis either ! (But CTT analysts usually do not
know this). Raw-score fit analysis tends to be superficial, so the misfit in the dataset to a raw-score
Classical Test Theory model is often overlooked.

62.

We have now had 40 years experience with mean-squares since Wright & Panchapakesan (1969)
proposed them for Rasch usage (see Optional Reading at #178). The following Tables summarizes them
from a Rasch measurement perspective.
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63. H. Table 7: Interpretation of Element-level Mean-Square Fit Statistics:
Mean-square | Interpretation
=70 Distorts or degrades the measurement system. (The background noise is starting to
' drown out the music.)
Unproductive for construction of measurement, but not degrading. (The background
1.5-2.0 L . ! . .
noise is audible, but not intrusive to the music.)
0.5-1.5 Productive for measurement. (Beautiful music)
Less productive for measurement, but not degrading. May produce misleadingly good
<0.5 e . . .
reliabilities and separations. (Music too quiet)
64. ) ) Point-
Person Responses: Diagnosis OUTFIT INFIT
Measure
Easy -- Items -- Hard Pattern Mean-square [Mean-square .
Correlation
1111/01101101001!000 Modeled/Ideal 1.0 1.1 .62
111111111000001000 Guttman/Deterministic 0.3 0.5 0.87
000!0000011111/111 Miscode 12.6 4.3 -0.87
01111111110000;000 Carelessness/Sleeping 3.8 1.0 0.65
11171111000000:001 Lucky Guessing 3.8 1.0 0.65
10170101010101/010 Response set/Miskey 4.0 2.3 0.11
11171000011110;000 Special knowledge 0.9 1.3 0.43
11171010110010;000 Imputed outliers * 0.6 1.0 0.62
111701010101017000 Low discrimination 1.5 1.6 0.46
11111110101000;000 High discrimination 0.5 0.7 0.79
111711110100001000  |Very high discrimination 0.3 0.5 0.84
Right | Transition | Wrong
>> >>
v OUTFIT sensitive to 10 >>1.0
outlying observations unexpected | - disturbed
high - low - high ying outliers pattern
INFIT sensitive to <<1.0 overly <<1.0
pattern of inlying predictable Guttman
low - high - low observations outliers pattern
65’ LOOk baCk at the Table abOVe. Person Responses: Diagnosis OUTFIT INFIT
The mean-squares for our imagined typical respondent Easy - Items - Hard ‘ Pattern Mean-square Mean-square
are near to 1.0 - good! 11110110110100(000 |  Modelledldeal | [_LO 1] |
66. | What about the “lucky guesser” who succeeded on the
mOSt dlfﬁCLllt ltem. The OUTFIT mean—square IS 3.8, Person Responses: ‘ Diagnosis OUTFIT INFIT
much bigger than 1.0. That lucky guess has degraded the | ="'~ patern i
111:111100000010(L) |  Lucky Guossing | | ‘

guesser’s measure. It is less secure as a basis for
inference. Do we really want “guessing for success”?

11




67.

I. Table 7: Outfit vs. Infit

68.

Did you notice that the INFIT mean-square for the
lucky-guesser is 1.0, its expected value?

What is going on?

The Outfit statistic is outlier-sensitive.

The Infit statistic is sensitive to patterns in the
targeted responses. It is inlier-pattern sensitive.

OUTFIT sensitive to
outlying observations

N~—

high - low - high

INFIT sensitive to
pattern of inlying
observations

low - high - low

69.

Take a look at “special knowledge”.

Imagine the items are in 4 cluster of difficulty: addition,
subtraction, multiplication, division.

Then most children will follow the typical Rasch
pattern. But those who are taught: addition,
multiplication, subtraction, division will have a different
pattern: fail on subtraction, succeed on multiplication.

Special knowledge or Alternative curriculum
Person Responses:
Easy -- Items -- Hard

11171000011110,;000
Add-Subtract-Multiply-Divide

70.

The OUTFIT statistic is 0.9 (less than 1.0). The Outfit
statistic reports that responses far from the person ability
are predictable.

The INFIT statistic is 1.3, reporting the patterns in the
data are somewhat unpredictable. The Infit statistic
detects the unexpected pattern of responses near the
person ability.

OUTEIT
Mean-square

INFIT
Mean-square

Diagnosis

Pattern

Person Responses:
Easy - Items - Hard

LTI | Gl ol | |

71.

Mathematically, the OUTFIT Mean-square is the
conventional statistical chi-square divided by its degrees
of freedom.

The Infit statistic is an information-weighted mean-
square statistic.

For the N observations that we are
summarizing in the mean-square statistics:

Outfit Mean-square = X (Rni2 / Vi) /' N
Infit Mean-square = X (Rniz) /2 Vi

72.

Glance back at Table 7.2.2. It should be starting to make
more sense to you.

Red arrow: Item 7 has the biggest Outfit mean-square,
MnSq, statistic: 2.25. This is much bigger than the
expected mean-square of 1.0. There is more “unmodeled
noise” than useful “statistical information” in this item.
Green arrow: Item 14 has the second biggest Outfit
MnSq: 1.48.

| Ohavd Obswd (osvd Faird] Mokl |
| Seare Comt Average Aveage Messure 8.5, |
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73.

Red box: Item 7 (biggest OUTFIT mean-square) has two | Table 4.1 Unexpected Responses (7 residuals sorted by u).
unexpected responses in Table 4.1 . R
Green box: Item 14} (second blggest.O'utﬁt MnSq) has | Cat Score Exp. Resd StRes| Nu Chil Nu Tapping items |
only one response in Table 4.1, but it is the most T e |
unexpected response. This is the most outlying response. 1 .
0 1.0 -1.0-6.1| 2Boy [7 1-4-3-2
0 1.0 -1.0-6.1 | 24 Gird 7 1-4-3-2
n :

.0 =1.n -4.8 1 24 GQirl

We see that the unexpected responses in Table 4.1
can cause the Outfit MnSq statistics in Table 7 to be
large. Start by looking at the Outfit statistics in Table 7 | [n big datasets, Table 4 can be come

to localize the problem areas in the data. Table 4 tends unmanageably long (which is why it is after

to be too detailed. Table § in the Report output file)

74.

Diagnosing misfit:

Large OUTFIT mean-square > 1.5 - Unexpected off-target observations - Look at Table 4

Small OUTFIT mean-square < 0.5 - Off-target observations too predictable - Are there imputed data or
other constraints?

Large INFIT mean-square > 1.5 - Unexpected patterns in on-target observations - Very difficult to
investigate.
Suggestion: Write out the residual file to Excel. Sort on person (or item, etc.) element number
and “logit”. Look at patterns in responses near logit 0.

Small INFIT mean-square < 0.5 - On-target observations too predictable - Are there redundant items or
response sets in rated items?

75.

J. Table 7: Misfit: Size vs. Significance: MnSq vs. Zstd

76.

We know that a large mean-square statistic flags unexpectedness in the data. But is this an unusual
amount of unexpectedness, or merely a reflection of the randomness in the data which the Rasch model
requires? The Zstd statistics (mean-squares standardized as z-statistics) answer this.

The Outfit and Infit Mean-squares are derived from chi-square statistics with their d.f.. So we know how
unlikely we are to observe any particular mean-square value (or worse). This is what the Zstd statistics
report.

77. | We could report the probability of the mean-square. Item 7: Outfit MnSq = 2.25
Computing the actual d.f. is complicated, so let’s chi-square = 2.25 with d.f. = 1
assume the mean-square value is a chi-square with 1 d.f. probability =~ 0.13

78. | Our experience is that small probabilities become long Item 7: Outfit Zstd = 1.1
numbers that are often difficult to think with. So instead probability = 0.14

of reporting the probability, we report the equivalent
unit-normal deviate [see Appendix 1], called Zstd, “the
mean-square statistic standardized like a Z-score”. This
is also a Student’s #-statistic with infinite d.f.

79. | Reporting Zstd simplifies interpretation. |Zstd| > 2.0 are statistically significant
See Appendix 1 for more Zstd values. |Zstd| > 2.6 are highly significant
80. So, the rule-of-thumb with Outfit and Infit statistics is:

“MnSq size: large enough to be distorting; MnSq > 1.5
Zstd significance: improbable enough to be surprising. Zstd > 2.0”
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81.

What about unexpectedly low mean-squares?

These are paradoxical! Here is a Guttman response
string, name after psychometrician Louis Guttman. He
proposed that the ideal response string is one where
someone succeeds on all the easy (for that person) items
and fails on all the hard items. The result would be the
response string you see here. This is also the best
possible response string for Classical Test Theory. It has
the highest point-biserial correlation and the highest
discrimination indexes, and results in the highest test
reliabilities.

Guttman’s ideal response-pattern is perfect for
ordering, but not for measurement. For measurement
we need uncertainty in the responses. The closer to the
item difficulty, the more uncertain each person’s
responses. This fundamental to Rasch theory.

Persin Respones Digmss | OUTETT | NEIT
A i Pt | Moaquare Mo
ILIIL00000000 | CotnanDetermunse | 03 | 08

Guttman/deterministic. Louis Guttman, a
leading psychometrician around 1950,
proposed that the ideal item would be one on
which all low performers failed and all high
performers succeeded. It would act like a
switch. It would have infinitely high
discrimination. If you knew the location on
the latent variable of the switch for each
person, then all person responses would be
exactly determined.

82.

So what is wrong with a Guttman pattern from a Rasch
perspective?

Rasch proposes that any reasonable subset of items
should give statistically the same estimate as the full set.
So let’s split the test high-low:

1. According to the easy items, our respondent is a
genius.

2. According to the difficult items, our respondent is a
dunce.

A contradiction!

The problem is that the Rasch transition zone of
uncertain responses to the targeted items is missing.
Of course, the Rasch measure has correctly located the
respondent between the easy and hard items on the
latent variable, but the response string is squeezed
together from the Rasch perspective.

Responses:
Easy--llems--Hard

| luuuu Cenius!

Paitern
Diagnosis

Responses:
Easy--llems--Hard

| wwd  Dunce!
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83.

Guttman Patterns and Low Mean-squares < 0.5:

Guttman patterns produce low Mean-Squares.

Low mean-squares correspond to persons and items which are too predictable. They are lacking in the
uncertainty Rasch needs for constructing measures.

This makes the reported standard errors (measurement precisions) too small and the reported reliabilities
(measure reproducibility) too high. In general, however, low mean-squares are not a serious problem.

Small standard errors (high precision) and high reliability (high measure reproducibility, a consequence
of high precision) are good, but only if that level of precision is really supported by the data. Here the
reported standard errors (though computed correctly) are too small from a substantive perspective.

A parallel situation arises in physical measurement. Suppose you weigh yourself 100 times. Then your
weight will be the average of those weights with precision (standard error of the mean) S.E.M. = S.D. of
your 100 weights / 10. But do you believe this high precision about your own weight? No. It is
statistically correct, but substantively misleading. You weight varies by more than that S.E.M. during
each day. The calculated standard error of your weight is too small, and so may mislead you about how
precisely you know your own weight.

84.

In general, low mean-squares are not a serious problem, but high mean-squares are.

Low mean-squares rarely lead to incorrect inferences about the meaning of measures, unless they are
caused by constraints which invalidate the measures.

So always investigate and remedy high mean-squares, and then re-analyze your data, before
investigating low mean-squares. The overall average mean-squares are usually close to 1.0, so high
mean-squares force there to be low mean-squares.

8s.

So what values of the mean-square statistics cause us

real concern? Here is my summary table from Winsteps Interpretation of

Help “Special Topic” “Misfit Diagnosis ... mean-square fit statistics:

Here's a story: . >2.0 |Distorts or degrades the
When the mean-square value is around 1.0, we are

hearing music! The measurement is accurate

When the mean-square value is less than 1.0, the music
is becoming quieter, becoming muted. When the mean-
square is less than 0.5, the item is providing only have
the music volume (technically “statistical information”)
that it should. But mutedness does not cause any real
problems. Muted items aren’t efficient. The

measurement system.

But be alert, the explosion caused
by only one very lucky guess can
send a mean-square statistic
above 2.0. Eliminate the lucky
guess from the data set, and
harmony will reign!

measurement is less accurate. 1.5 - 2.0 |Unproductive for construction of

measurement, but not degrading.

When the mean-squares go above 1.0, the music level

stays constant, but now there is other noise: rumbles, 0.5-1.5 |Productive for measurement.
clunks, pings, etc. When the mean-square gets above

2.0, then the noise is louder than the music and starting <0.5 |Less productive for measurement,
to drown it out. The measures (though still forced to be but not degrading. May produce

additive) are becoming distorted relative to the response
strings. So it is mean-square values greater than 2.0 _
that are of greatest concern. The measurement is separations.

misleadingly good reliabilities and

inaccurate.
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86.

Every Rasch analyst has favorite rules for identifying
misfit. The Reasonable Mean-Square Fit Value is from
http://www.rasch.org/rmt/rmt83b.htm

No rules are decisive, but many are helpful.

Reasonable ltem Mean-square Ranges

for INFIT and QUTHIT

Type of Test

MCQ (High stakes)
MCQ (Run of the mill)
Rating scale (survey)
Clinical observation
Judged (agreement encouraged)

87.

Close all open Facets windows

X

88.
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89.

K. Facets Specification and Data: The Guilford Data

90.

Let’s apply what we’ve learned to some 3-facet rating
data.

Launch Facets.

Click on “Files”

Click on “Specification File Name?”

Double-click on “Guilford.txt”

91.

“Extra specifications?”
Click on “Specification File Edit”

Files Edit Font Esfimation OQumout Tables & Plots  OutputBles  Graphs  Help

1>
Facets (Many-Facet Rasch Measurement) - expires 7/1/2009 - Version No. 3.65.0
rights reserved.
4/27/2009 7:37:34 BM
Current directory: C:\Facets-time-limited\examples
Editor = notepad.exe
Use Files pull-down menu for Specification File Name, or Ctrlto
Specification = C:\Facets-time-limited\examples\Guilford.txt
Processing\ specifications from "C:\Facets-time-limited\examples\Guilford.txt"

| Exira Spedifications? X
) Pes

Extra‘specifications (or click OK) in the format:
iter=T\arrange=m

with no Spaces within specifications, and at least

one space,between them.

pecification
’ oK I File Esit

Cancel
Analysis

=

92 Guﬂford txt displays 1n a NOtePad WlndOW i This illustrates 6 different ways of accessing your data.
‘ : ' ; 5 ways should be commented out with ; so that only one way is active.
S ll d D _ i 1. Data from an 8P33 data file
Ccro own to Data= Data= Creativity.sav  ; 8P88 file with 1-5
. . ; 2. Data from an external text file
Notice that there are alternative data files. Most are ; Data = Croativity.txt ; standard text data file
PRI L)
Commented out Wlth 2 i 3. Data from an Excel spreadsheet
; Data= Creativity.xls ; Excel file with 1-5
blue bOX: All these data ﬁles Contain the same ; 4. Data from an 8PS3 data file, using dvalues= to simplify formatting
. : : ; dvalues = 3, 1-5
observations. You can see these in Optlon 6. ; Data = Guilford.sav ; 8P8S file omitting 1-5 for the 3rd facet
. .. + 5. Data fron an Excel data £ile, using dvaluss® to simplify Formatti
red box: We will use the Excel file, “Creativity.xls” almem b o G KRR BN
; Data = Guilford.xls ; Excel file omitting 1-5 for the 3rd facet
Do not edit Guilford.txt - we will make the Change USing ; 6. Data included in the Specification file. You can use , or tab or blank as separators
. e . ; Data=
Extra Specifications? —
;1,2,1-5,9,7,5,8,5
93. | Click on your Facets analysis on the Windows task bar - ‘-"'"""-
Guilford.txt |
94. | Type into the Extra Specifications? box: X|

Data=Creativity.xls
with no spaces

(or copy-and-paste: Ctrl+C Ctrl+V )

Click on OK

Extra specifications (or click OK) in the format:
iter=1 arrange=m

with no sp within

one space between them.

IData=Creativity.xls i
=%

ifications, and at least

L of

Specification
File Edit

Cancel
Analysis

(=
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95. | The Extra specification, Data=Creativity.xls is shown in | Use Files pull-down menu for Specification I
the Facets Analysis window. Specification = C:\Facets-time-limited\exam
: i £
. ra specifications: Data=Creativity.xls
“What is the Report Output file name?” e Y
: 1 ’9 . '
- cl.10k on “Open” to accept the default value: e e B
guilford.out.txt <
F.g
Analysis begins ....
96. | Notice on your Facets analysis window screen that the ,L“?i;f;g“.iilfi“'z‘-c‘.\?;tiwm- —
R . . lImporting datafile= C:\Facets-time-limited\examples\Creativity.xls
“Creathlty.XIS” 1S lmported. ,ma;tzglﬁ;r:;::pamd datafile ... see Help menu: Waiting
First active data line is: 11 1-5a 5 5 3 5 3
Processed as: 1, 1, 1-5a, 5,5,3,5,3
Facets launches Excel to obtain the responses. Excel is Total Lines in deta fide = 2¢
sometimes slow, so you may see the “Waiting ....” Bethonses meccasd o medel: B nCmmmEm S 08
message Number of blank lines (Edit Data=) = 3
. Valid responses used for estimation = 105
97. | Take a look at the Guilford data in Creativity.xls
FCl cets menu bar: Clle on “Edit” Files | Edit. Font Estimation OutputTables & Plots Output Files Graphs
. . EdmSpecification = C:\Facets-time-imited\examples\Guifford.txt
Cth on “Edlt EXCG] Data” ?a Edi port Output = C:\Facets-time-imited\examples\Guiford.out.bxt
Excel launches and displays the data ...
98. | The data, from “Psychometric Methods” by J.P. "“’f‘ P LI —
. . . . . File Edit View Insert Format Tools Data Window Help
Guilford (1954) are of 3 Senior Scientists (the judges) DR SRY R - |&z sl 2w
rating 7 Junior Scientists (the examinees) or 5 items of Al Id . T\ udge —
Creativity. The observed range of the rating scale is 1-9. | L1 [Cuse Joamnces rems raings ; i ;
. . . | 2 | -5a
Guilford omits to tell us what the possible range was. ER 2 5a 9 7 5 8 5
. 4 1 3 1-5a 3 3 3 T 1
So row 1 of the spreadsheet is: (5 1 1 152 7 3 i 3 3
. . . . 6 1 5 1-5: 9 T T 8 5
; judges examinees items ratings (7| 1 6 te 3 5 3 5 1
. " . 8 1 T 1-5 T 7 5 5 5
the *;” 1s to tell Facets this row 1S a comment, not data. (9 . b 6 5 . 6 3
Row 2 is the first data row, it says: E z = ! ; : 2
Judge 1 rated examinee 1 on 5 items, 1 to 5, and the = e : B ; ;
. 14| 2 6 1-6 4 4 6 4 2
ratings were 5, 5, 3, 5,3 15| 2 7 152 3 3 5 5 4
(LM k& 16 3 1 1-5 5 5 5 T 3
1-5 means “items 1, 2, 3,4, 5 il y ot 2 2 i 3
1 9 = 7 _5 1 - 18 3 3 1-5 3 5 5 5 5
' 1-5a” 1s toi)r’f:vent Excel converting 1-5 into -4. Facets e 3 a3 5 5 5 :
20 3 5 1-5 9 7 7 T 7
ignores the “a”. ‘ 2 5 | tha [ 9 ! ! ! !
There are 21 rows of data, and 105 ratings. 221 3 7.tk 7 7 7 5 7
99. | Now let’s examine the Guilford specification file. P Guilford.oxt - Notepad

You may have it on your Windows task bar, if not ...

Facets menu bar: Click on “Edit”
Click on “Edit Specification”

You are probably racing ahead of me, but just in case ...

; starts a comment

Title= specifies the title to print at the top of each Table.

File Edit Format

; Guilford.txt
Title = Ratings of Scientists (Psyck
Score file = GUILFSC ; score file
= 3 H
Inter—-rater = 1 ;

View Help

Facets three facets: judc

facet 1 is the rat

LArrange = m,2N,0f ; arrange ts
; 2N = element number—ascenc

; and 0Of

= 9 :

Non—centered = 1 ;

= E-score—descendir
Positive the examinees have

examinees
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100{ Score file= specifies the file names to use for writing The Score file for Facet 1:
out score files for each facet.
. . . File Edit Format Wieww Help
The score files contain summary statistics for each T Semicr scicmtists
element in each facet. “i%5 68  a@s.eo | a.as
. 15 .00 325 .00 4 .4
See Facets Help for exact details 181 .00 as. oo s.17
101} Facets = specifies the number of facets in the analysis. Inter-rater = will produce this in Table 7:

We have 3 facets: judges, examinees and items.

Inter-rater = specifies the facet number of the rater or
judge facet. This instruct Facets to compute rater-
relevant statistics for this facet. For us, facet 1 is the
judge facet, the “Senior Scientists”.

| Exact Agree. | |

| Obs ¥ Exp ¥ | N Senior scientists |
| 21.4 25.2 | 2 Brahe |
| 35.7 25.8 | 1 Avogadro |
| 37.1  25.3 | 3 Cavendish |

102| Arrange = tells Facets in what order to arrange the Arrange= will produce this:
elements when they are displayed in Table 7. (arranged by
“Arrange = m” means “Arrange in measure order |
descending” so that the highest measure appears first in | it Outfit  |Estim. | |
the Table. This is done for all the facets. q IStd MnSq ZStd|Discrm| N Junior Scientists |
13 — tE) . 6c : e 1 e
Arrange = m, 2N” means: “after doing Arrange = m, a-3.2 .23 -3.2] 1.48 |[T)anne |
then 1 -1.1 .60 -1.2| 1.30 |j2|Betty |
red boxes: output a copy of Table 7 for facet 2 with the |3 -4 1.22  .7] .84 |}3)Chris |
1 . ical ord ding” hat el @ .9 1.37 1.8| .87 |J4fDavid |
elements in numerical order ascending” so that element | 4 ;.5 1.0a 2.2| .34 |Jsledward |
1 is displayed first. 9 -.8 .77 -.5| .93 ||6fFred |
5 -.3 .84 -.4| 1.37 |j7)George |
103] Positive= defines which facets are oriented so that more | Positive and negative facets in Table 6:
score lmphes more measure. Table 6.0 &A1l Facet Vertical "Rulers".
In this analysis, we have chosen to do that for facet 2, Vertical = (2N,3a,2%,1a,1a,8) Yardstick
the “Junior Scientists” who are the examinees. @~ |+~ Tt T oo TTTooo oo
|Measrunicr ScientistsBraits
I ___________________________________
104| Non-centered= specifies which facet does not have a Table 6 from a large analysis:
local origin, but is measured relative to the origins of the | iMeasrizsupseces  1rmavers ItTeems | =
other facets. T i R
1 1 1 1 1
Loa : ! :
. . 1 1 I I I
Example (not the Guilford analysis): ! ! ! ! !
Red box: shows the subjects non-centered. N P : |
Other red arrows: the Raters and Items are centered = L. i l
o IO
. . . 1 1+ . + -+ 1
Guilford.txt is a study of rater behavior, so we have ! | : v 2
chosen facet 1, the “Senior Scientist” judges, to be non- | = o " g il 4 2
. 1 1 o~ | o ow oo | mmmmw | 1
centered, so that they “float” relative to the other facets. ! ! Lo U
1 —1 + + + + 1
105 More specifications in Guilford.txt Unexpected = 2 ; report ratings if =

The next two specifications are for Table 4 of
“Unexpected Responses” (or observations)

Usort = (1.,2,3),(3,1,2),(2,3) ; soz
Vertical = 2ZN,3L&,2*,1L,12 sdefa
Zzcore = 1,2 ;report bilases greate

Pt—-biserial = measure ; point-measure
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106

Unexpected= says how unexpected? “2” means “report
responses with a standardized residual, StRes, of 2 or

Table 4: Unexpected = 2:

e

X R | Cat Score Exp. Resd
bigger in Table 4”. i A
| 3] =3 2.9 2.1
| 2 2 &.0 —4.0
107 USOl‘t= speciﬁes hOW Table 4 iS SOI’ted. Table 4.2 Unexpected Responses (4 residuals sorted by 3,1,2).
See Facets Helll. : cat Scors Exp. Resd StRes| N Senior sc N Junior N Traits }
1 2 2 6.0 -4.0 -2.7 | 2 Brahe 5 EdwardAttack |
| & 6 2.9 3.1 2.4 | 2 Brahe 6 Fred [3|clarity |
| 2 2 €.1 -4.1 -2.7 | 2 Brahe 5 Edward |4Daring |
| & 6 2.9 3.1 2.4 | 2 Brahe 3 chris |S|Enthusiasm
108 Vertical= defines the layout for the Table 6 “vertical

rulers”
Zscore= is for the interaction/bias analysis in Tutorial 3

Vertical = 2N,3A,2*,1L,1A
Iscore = 1,2 jreport bias

109

Pt-biserial= is the point-biserial correlation or the point-
measure correlation.

PtMea is the observed point-measure correlation
PtExp is the expected value of the point-measure
correlation when the data fit the Rasch model.
When possible, both the observed and the expected
values of the correlations are reported.

Table 7:
| Correlation |
1| PtMea PtExp |
e —————————— +
| 45 .56 |
| .36 .38 |
| .67 .38 |
| 62 .58 |
| 51 .38 |
e +

110

Model= specifies the model. The B’s are for the
interaction/bias analysis in Tutorial 3. The ?’s mean
“any element”. “Creativity” is the name of a user-
defined rating scale.

Rating scale= defines the rating scale. It is called
“Creativity”, and it is “R9”, a rating scale with highest
category 9.

1=lowest is the number and name of a category,

* ends the category list

Model = ?B,7?B,?,Creativity

A bias/interaction

senior scientists (

log(Pnijk/Pnijk-1)

Bn = ability n, Di
;i Pnijk = probability

Rating scale = Creativity,R9

LTI T T T

1 = lowest ; name of low
5 = middle 3 no need to
9 = highest ; name of hig
*

111

In a model specification, "?" or “$” means "any element
of this facet".

"#" means any element of this facet, and each element
has its own rating scale.

So, Fyx will look like:

Models=7?, ?, 72, R

Fj will look like:
Models = ?, #, ?, R ; assuming that "j" is the second
facet.

Allowing each judge to have a unique
(partial credit) rating scale:
Model = #, ?, ?, Creativity

? does not work correctly in some versions
of Windows. You can use $ instead.
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Labels= specifies the facet and element names and

numbers.

If you look at the Junior Scientists, you can see that the
element numbers can be jumbled.

Labels= jto
1,%enior scientists jnal
1=Avogadro jnal
2=Brahe sth

3=Cavendish

*

2,Junior Scientists
2=Betty

S=Edward

113

Data= specifies the data.

The data always have the same layout, but they can be
files of different types. Here are the current options:

; 1. Data from an SPSS data file
Data= Creativity.sav  ; SPSS file with 1-5

; 2. Data from an external text file
; Data = Creativity.txt ; standard text data file

Suffix Data= Format ; 3. Data from an Excel spreadshest
: ; Data= Creativity.xls ; Excel file with 1-5
txt text file (MS-DOS or Windows)
xls xlsx |Excel workbook: first or only worksheet ; 4. Data from an SPSS data file, using dvalues= to simplify
; dvalues = 3, 1-5
rda R statistics data file ; Data = Guilford.sav ; 5PS§ file omitting 1-5 for the 3rd £
.sdata SAS data file ; 5. Data from an Excel data file, using dvalues= to simplif
; dvalues = 3, 1-5
-Sav SPSS data file ; Data = Guilferd.xls ; Excel file omitting 1-5 for the 3rd
.dta STATA data file
; 6. Data included in the Specification file. You can use ,
(other) |text file (MS-DOS or Windows) ; Data=
;1,1,1-5,5,5,3,5,3
;1,2,1-5,9,7,5,8,5
:1,3,1-5,3,3,3,7,1
114} Dvalues=

some facet information in the data file can be specified
once, instead of in every data line. This is time-saving.
More to come about this ...

cel data file,

. ™™l1l= ; Excel file
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L. Facets Output Tables: The Guilford Report Output File

116 On the WindOWS taSk bar Table 1. Specifications from file "C:\Facets-time-limited\examples\Guili
. 2
click on “Guilford.txt.out” Title = Ratings of Scientists (Psychometric Methods p.282 Guilford 1954)
Data file = Creativity.xls
or Output file = C:\Facets-time-limited\examples\Guilford.out.txt
on the Facets menu bar, click on “Edit” . Data specification
. 113 . 3] Facets = 3
click on “Edit Report Output T e 1
Positive = 2
. . . . Labels =
Table 1 reports the specifications for this analysis. The T, Senior sclentists ; (elements = 3]
crucial details to check are the numbers of elements in S mrare (e oy e
each facet. If incorrect, modify your specification file. Model = °B,5,?, CREATIVITY, ,
Rating (or other) scale = CREATIVITY,RS,General Ordinal
Table 2 hat h d he d h 3 Table 2. Data Summary Report.
117, Table 2 reports what happened to the data. We have

judges x 7 examinees x 5 traits = 105 observations. We
expect them all to match our measurement model.
They do. Great!

Assigning models to "creativity.xls"

Total lines in data file = 22

Total data lines = 22

Responses matched to model: ?B,?B,?,CREATIVITY,1

118. Table 3 reports the estimation process. We expect the Teple 3. drewation Report.
last iteration to have very small numbers. | Treration | wax, Score Residmal  max. Logit Cnange |
1 Elements % Categories Elements Steps |
I |
red box: for the largest raw-score difference, less than .5 | | 5is 3 o1 cees 175 24,7219 aars 2.2985 |
| JHMLE 3 —-4.1066 -3.4 -.T658 -.0648 -.0%30 |
| JMLE 4 -1.4643 -1.2 .8B15 -.0244 -.0517 |
blue box: for the biggest logit change, less than .01. | hiE & aam o ‘jees  _oiss  _oste |
| JMLE 7 -.6849 -.5 .2855 -.0102 -.0171 |
We haVe these' Great! | JMLE 8 -.5835 -.4 .2359 .0081 -.0142 |
| JMLE 9 —. 4505 -.3 .1532 . 0067 -.0117 |
. . . | JMLE 10 F 2082 ) -.2 1592 ~.0096 |
For big data sets, the maximum raw-score residual can be
considerably larger without affecting the accuracy of the | If you want to stop the iterative process early,
estimates. press you Ctrl+F keys together.
119. “Subset connection O.K.” so that the measures of all the
elements belong to one cohesive structure. We will Subset connection 0.K.
discuss this in Tutorial 4.
120.| Table 4 appears after Table 8
121, Table 5 shows some global summary statistics.

For each observation:

Cat (category) is the observation

Score is the category after it has been recounted
Exp. is the expected value of the Score

Resd. is the residual = Score - Expectation

StRes is the standardized residual

Mean (average) is the average for the observations.
Count is the number of observations in the analysis.
S.D. (Population) is the standard deviation if the
elements are all possible elements for the facet

S.D. (Sample) is the (larger) standard deviation if the
elements are a sample of all possible elements (the
population) for the facet.

Table 5. Measurable Data Summary.

e e L e +
| cat Score Exp. Resd StRes| |
| ==mmmm e m e oo oo fmmmmmmmmm e |
| 4.84 4.84 4.84 | Mean (Count: 105) |
] 1.88 1.88 1.18 1.44 | 5.D. (Population) |
] 1.89 1.89 1.19 1.45§1.00)J| S.D. (Sample) |
e +

red box: When estimation has been successful
we expect the mean residual (Resd) and the
mean standardized residual (StRes) to be 0.0,
green box: and the S.D. of the standardized
residual (StRes) to be 1.0.
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122, An approximate global fit statistic, a log-likelihood chi-

square is shown. Its degrees of freedom, d.f,, are roughly | D2ta log-likelihood chi-square = 331.4227
Approximate degrees of freedom = 85

(number of responses - number of elements). Chi-square significance prob. = .0000
The Rasch model is a model of perfection, so we always
expect to see significant misfit to the model in empirical
data, as we do here: p=.0000

123.| Red box: Part of the variance in the data is explained by Cont Mean 5. Params
the Rasch measures, and, as the Rasch model predicts, Responses used for estimation = 105 4.84 1.88 2

. lained. In th d 41% . lained b Count of measurable responses = 105.00

part 1S unexplamed. n these data, o 1S eXplame ] Yy Raw-score variance of observations = [3.53 100.009
the Rasch measures, a usual amount - even though it 41% | Variance explained by Rasch measures = |1.45 41.028
looks low! Variance of residuals = |[2.08 58.98%

124.

Table 6 shows the measures graphically. We can see that
there is a noticeable spread among the Junior Scientists
(examinees) and the Traits (items) which we want. There
is also a smaller spread among the Senior Scientists
(judges) which we don’t usually want, but the Rasch
measures have adjusted for.

The rating scale, “CREAT” is shown to the right.

Which is the most lenient judge? The column heading
“-Senior Scientist” tells us. The most lenient judge will
give the highest ratings. “-” means ‘“high score implies
low measure”, so Cavendish is the most lenient judge.

Vertical = 2N, 3A, 2%, 1L (same as 1A), 1A, S

|Measr |+Junior Scientists|-Traits

|+Junior Scientists|-Senior scientists|-Senior scientists|CREAT|

+ o1+

Enthusiasm

Clarity

1 Basis

Attack Daring

+ o+

Brahe

Avogadro
Cavendish

Brahe

Avogadro
Cavendish

+(9) +
7

3
+ (1) +

|Measr |+Junior Scientists|-Traits | *=1

| -Senior scientists|-Senior scientists|CREAT|

125.

Table 6.1 is a graphical representation of the measures
we see in Table 7. It is useful when we need to picture
the statistics for large samples. M represents the mean,
S=1 standard deviation, and Q=2 standard deviations.
The numbers represent elements. The numbers match
Table 7.

Red box. In the bottom distribution for a much larger
dataset, there are 28 elements at “M”, the mean.

Read the numbers vertically.

Table 6.1 Senior scientists Facet Summary.

Logit:

211 1

E6698133654341425

g

==Y

1

1

(XS

126.

M. Table 7. Measure Tables

127.

Table 7 shows the scores and measures.

Measures are often reported in logits or other units
unfamiliar to our audience. They often ask, “but what do
they mean in terms of the scores I’'m familiar with?”
Green box: This is what the “Fair Average” does. It
takes the measures and shows what they imply as ratings
for a standard person rated by standard judge on a
standard item. “Standard” means an imaginary element
with the average measure of the elements of the facet.

In this example, the data are complete, so the Observed
Average rating is close to the Fair Average rating. But
when there are missing data, the Fair Average adjusts for
the missing data but the Observed Average does not.

| ©Obsvd Obswd Obsvd
| Score Count Average

| 156 35 4.5
| 171 35 4.9
| 181 35 5.2
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128.

In a practical assessment situation, different people may be administered different tasks and rated on
different items by different judges. You encounter the difficult tasks and the severe judges. I encounter
the easy tasks and the lenient judges. Fine! Your ability measure and my ability measure adjust for this.

But then the examination authorities say “Rasch measures are great, but when we publish the results, we
want them expressed as ratings on the original rating scale!”

So we have to go from Rasch measures back to the rating scale in a way that is fair - as though you and I
encountered the same judges and performed the same tasks. Facets does this for us by computing the
ratings we would have received (according to the Rasch measures) if you and I had both performed a task
of average difficulty and we were both rated by judges of average severity. This gives a “Fair Average”
rating.

129.

Red box: In Table 7, the “Model S.E.” is the . Precision  Accuracy

precision of the measure. This indicates how fuzzy |1 opsva obsva obsva Fair-ui wode1 Iif Tnrit outfit

. . | Score Count Average Avrage|Measurel] S.E. I MnSg Z5td MnSg ZStd

1s the location of the element measure on the latent |1 ; b

. 1 131 28 4.7 4.60] .07 J14Qf1.35 1.3 1.34 1.2

Varlable. 1 148 28 5.3 5.28] -.23] .13 |l .85 -.1 .98 .0
1 150 28 5.4 5.386] -.27 13 .62 -1.6 .60 -1.7
1 t t

In everyday speech, the words “precision” and
“accuracy” often mean the same thing, but forus | Measurement Precision: how exact is the location

they are different. on the latent variable?
Imagine arrows being shot at a target. If the arrows | Measurement Accuracy: is it the correct location?

form a close group, then the archery is precise. If o . '
the arrows are in the neighborhood of the center of | Estimation Precision (decimal places): how

the target, the archery is accurate. When the arrows closely does our estimate match the estimation
all hit the bull’s eye, the archery is accurate and criteria?
precise. Statistics are often reported with 6 decimal places

(high estimation precision) even though they are
reporting only a few data points (low substantive
precision).

130.

Precision means “how reproducible is the location | Accuracy means “how well does the measure
of the measure on the latent variable with data like | correspond to an external standard”. In our case, the

these”. It is like the gradations on measurement external standard is the Rasch-model ideal of
scale. It is internal to the measuring system, and is | invariant measure additivity.

quantified in the standard error of measurement, If the data fit the Rasch model, then the parameter
S.E. estimates accurately reflect the ideal additive

The more observations of an element, the more measurement framework. For us, accuracy is
precise will be the estimate. As carpenters say, quantified in the quality-control fit statistics, Infit
“Measure twice, cut once!’ and Outfit.

131.

We can obtain higher precision for an element’s measure by:

1. More observations of the element, e.g., a person takes a longer test or is rated by more judges.

2. Better targeting of the element, e.g., a person takes a test that is not too easy or too high.

3. More categories in the rating scale, e.g., a 5-category rating scale instead of a 3-category scale, but
beware of over-categorization .... which we will soon meet!
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N. Table 7: Fit Statistics

133| Green box: Guilford.out.txt Table 7.1.1 shows the et | yel | Tafie | ot || i
measures for the judgeS. 1 Score  Count IMEEE'JIE 5.E. 1 MnSg I5td MnSg ZStd} ! ¥ Senior scientista :
Blue box: Brahe (lowest Total Score) is the slightly [ 2 T ) T | |
most severe judge. 3 E T B e e S
Red box: But, more importantly, look at the fit statistics. | | ot ' |
Brahe is the most misfitting (Mean-squares > 1.0). The | | ‘s o) & .1 : 1 S el | sp, (et |
other two judges have about the same fit. e el e s T A RS e |
Orange box: The average of the mean-squares is usually | Always investigate underfit (high mean-
near 1.0, so a misfitting judge, like Brahe, forces the squares) before overfit (low mean-
other judges, Avogadro and Cavendish to be reported as | squares). Often the overfit disappears when
overfitting. the underfit is eliminated from the data.

134| Notice also that the Infit and Outfit columns are Polytomous Mean-square Fit Statistics

similar. This is usual with long rating scales (9
categories here) so that the operational range of
each item is very wide.

Under these circumstances, my choice is only to
report Outfit, because it is the conventional
statistical chi-square (divided by its d.f.) which is
familiar to most statisticians, but please do report
both if your audience expects to see them.

Polytomous mean-square statistics have the same
characteristics as dichotomous ones, #Error!
Reference source not found., but are much harder
to diagnose by eye.

Response String " )
‘ Easy....... Hard ‘INFIT MnSq ‘DUTFIT MnSq ‘RPM Corr. Diagnosis
|. modelled:
33333132210000001011 .98 .99 78 Stochastically
31332332321220000000 .98 1.04 81 monotonic in form,
33333331122300000000 1.06 .97 87 strictly monotonic
33333331110010200001 1.03 1.00 .81 in meaning
II. overfitting (muted):
33222222221111111100 18 22 .92 Guttman pattern
33333222221111100000 3 .35 .97 high discrimination
32222222221111111110 21 26 .89 low discrimination
32323232121212101010 52 54 82 tight progression
Ill. limited categories:
33333333332222222222 24 24 87 high (low) categories
222222222271111111111 24 34 87 central categories
33333322222222211111 16 20 .93 only 3 categories
IV. informative-noisy:
32222222201111111130 .94 1.22 55 noisy outliers
33233332212333000000 1.25 1.09 a7 erratic transitions
33133330232300101000 1.49 1.40 T2 noisy progression
33333333330000000000 1.37 1.20 87 extreme categories
V. non-informative:
22222222222222222222 .85 1.21 .00 one category
12121212121212121212 1.50 1.96 -09 central flip-flop
01230123012301230123 362 461 -19 rotate categories
03030303030303030303 514 6.07 -09 extreme flip-flop
03202002101113311002 2499 359 -01 random responses
VI. contradictory:
11111122233222111111 175 2.02 .00 folded pattern
11111111112222222222 256 320 -87 central reversal
22222222223333333333 21 413 -87 high reversal
00111111112222222233 4.00 558 -92 Guttman reversal
00000000003333333333 8.30 9.79 -87 extreme reversal
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O. Table 7: Inter-rater Statistics

136| Inter-rater= has instructed Facets to compute some | = - po—-- o=
rater agreement statistics. Exact Agree. i i
Green box: The “Exact Agreement Observed %" report _h_'ff'jfr_‘_"_'ff
what percent of the ratings by this rater agree exactly 2 Brahe
with the ratings made by another rater. the “Exact 1 Avogadro
Agreement Expected %” reports the agreement that 3 Cavendish
would be seen if the data fit the Rasch model perfectly. | ~ — ~—Tre————c--rmmmmm 7"

137| For Brahe the observed agreement is 21.4%. Is this good or bad? We would tend to expect a much
higher agreement. But Facets provides a reference point. It reports that for these raters, examinees and
items, the “Exact Agreement Expected %’ for Brahe is 25.2%. Usually the observed agreement is
slightly higher than the expected agreement, because most raters try to be “agreeable” with each other.
Look at Avogadro and Cavendish, their observed agreement %’s (35.7%, 37.1%) are much higher than
expected (25.8%, 25.3%). They are agreeing together against Brahe.

138 Under Table 7.1.1, the agreement statistics are
summarized. In these data, the observed “exact i il - -
agreement” is 31.4%, but the expected agreement is Inter-Rater agreenent opportunities: 105 Eract agreenents: 33 = 148 Expected: 26.7 = 5.8
25.4%. The judges are agreeing too well!!
Something is wrong!

139| Facets models the raters to be “independent experts”. These would produce an “exact agreement”

percent, which is the same or slightly higher than the “expected agreement” percent.

But many raters are trained to behave like “rating machines”. Agreement is encouraged among the
raters, and disagreements are penalized. For these raters we expect the “exact agreement” percent to be
much higher than the “expected agreement” percent. When the “exact agreement” approaches 100%, the
raters are behaving the same way as optical scanners do for “bubble sheets”. The raters have become
part of the data-collection mechanism, they are no longer a facet of the measurement situation.
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P. Table 7: Reliabilities and Separations

141

Model, Populn: BEMSE .12 Adj (Trume) 5.D. .07 [ Separation .60 JStrata 1.13 BReliability (not inter-rater)}.26
Model, Sample: BMSE .12 Adj (Troe) 5.D. .12 jSeparation 1.02) Strata 1.69 Reliability (not inter-rater] .51

142

Under each Table 7 is a set of reliability statistics. These show the reliability of the differences between
the measures in the facet. They indicate the reproducibility of the measures, not the accuracy of the
measures. These reliabilities are not inter-rater reliability statistics (which show the rater similarity).
“Reproducible” - we can expect the same number if we repeated the same data collection. A stopped
clock is highly reproducible, so it is highly reliable. Of course, it is reliably wrong!

“Accuracy” - the current number is near the “true” number.

143

“Model” means “assuming all misfit in the data is due to the randomness predicted by the Rasch model”
“Real” (when shown) means “assuming all misfit in the data contradicts the Rasch model”
“Population” means “assuming this set of elements is the entire population.”

“Sample” means “assuming this set of elements is a random sample from the population of interest”
“RMSE” means “root mean-square error”, a statistical average of the standard errors of the measures.
“Adj (True) SD” means “the standard deviation of the measures, (Adj=) adjusted for measurement
error”, also called the “True” standard deviation.

“Separation” is the True SD / RMSE. It indicates how many measurement strata could be statistically
distinguishable among the measures, if the tails of the measure distribution are conceptualized to be
caused by outlying random noise.

“Reliability” is the ratio of the “True” variance of the measures to the observed variance.

“Strata” is (4*Separation + 1)/3. It indicates how many measurement strata could be statistically
distinguishable among the measures, if the tails of the measure distribution are conceptualized to be
caused by outlying “true” measures.

144

This table shows the relationship between measurement variance, measurement error, and reliability.

True Observed

Error | True | Variance Variance = Signal- | Separation Reliability

_ to-Noise | = True SD = True Variance /
RMSE| SD | = Trlje RMSE.Z + True Ratio / RMSE | Observed Variance
SD Variance

Strata
=(4*Separation+1)/3

0 1 0 0 0 0.3

1 2 0.5 1.7

4 5 0.8 3

Alalalala
AlWIN|2|O
BIWN =

1
2
9 10 3 0.9 4.3
16 17 4 0.94 5.7
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What does this table of separations and reliabilities
means? Here is a picture of Separation = 2.

Green curve: The larger curve is the conceptual “true”
distribution.

Black and blue curves: The smaller curves are the error
distributions for individual measures.

The x-axis on the graph locates the person measures on
the latent variable.

The y-axis is on the graph is the local density, i.e., what
proportion of the sample we expect at the x-axis location

"True" Distribufion

0.25 o

Error
Distribufions

(larger curve) or what proportion of observations of a - s 4 *i;ﬁﬁ b z s 4 5o
measure with error we expect at an x-axis value (smaller
curves). Separation =2 implies 2 error strata

146, So the question becomes “How many numerically different measures can we reasonably discriminate
within the true distribution?”
For Separation = 2, we can see that two measures at about -1.5 and +1.5, together with their error
distributions (the fuzziness of the measurement), matches the “true” distribution of the measures. The
splatter around only two measures (shown by the two smaller curves) covers the whole reasonable range
of the upper curve.

147, A physical analogy: Imagine I have a classroom of children and must report their heights.

The report is overdue, so I measure their heights quickly by eye. This will yield imprecise measurements
with high uncertainty. The measures of height would have big standard errors.

Question 1. How far apart must two heights be for me to be reasonably sure that the children's heights
are different?

Answer: Roughly three standard errors. we are comparing two measures and both have standard errors.
So, assuming the standard errors are approximately the same, the statistical value is

(two error distributions)*(p<.05)*(RMSE) = V2 * 1.96 * SE ~ 3 *S.E.

Question 2. In the observed distribution of heights, how many "reasonably sure" height-difference strata
are there, assuming there are no unusually short or tall children?
Answer: This is the "Separation", which is (True S.D. / Standard error).

Practical example:

My children have only two "true" heights: half are 1.5 meters high, and half are 1.7 meters high, so the
true S.D. of their height measures is .1 meters.

But when I record their heights by eye, the 1.5-meter-children have a range from 1.4 meters to 1.6
meters, and the 1.7 meter children have a range from 1.6 meters to 1.8 meters. So the standard error of
my height measurements is about .05 meters

The "separation" of my children is (true S.D./S.E.) = (.1 /.05) = 2. Two strata - exactly right.

If my standard error had been larger, the two height ranges would have overlapped and the separation
would have dropped. I would not have been able to distinguish tall children from short children.

But if my standard error had been smaller, there would have been a gap between the two error
distributions. The separation would have been bigger, perhaps 3 strata, alerting me that I could have
distinguished a third strata of children of height 1.5 meters, if there had been any.

It is the same with Rasch measures and their standard errors.
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148| For Separation = 2, notice that the peaks of the S.E. Separation = 2 = 2 error distributions
curves are 3 units apart. o35 | -
Strata: If we needed to discriminate 3 “strata”, we === Vs
could squeeze them in. The very top (with curve peak at | "~ T /TN
3), against the middle (with curve peak at 0), against the | / \ S
very bottom (with curve peak at -3). o0 4 N -
So, a very high performer can be discriminated from a TR
middle performer, can be discriminated from a very low SN /SN SN
performer. But we would need to look at the empirical / Y W
distribution of measures(in the “rulers” in Table 6) to AR AN PAAN RN
see if the distribution does have long tails where those Squeezing-in 3 error strata
very high and very low performers would be located. Strata =3
149| Here’s the same thing for reliability = 0.9, separation = | °*° .
3. We can see how the narrower error distributions allow | 4 “True” Disiribuiion .
for more different measures to be squeezed into the " N\
“true” distribution. 0257 X503 \ Error
ao Distributions
Separation (True SD / Error SD) is more useful than ois
reliability when reliabilities get much above 0.9. The '
maximum reliability is 1.0 so changes in reliability are 0.1 N
not noticeable. Changes in the equivalent separation are | . T
always identifiable. / ‘
e 7 % 543210 1 2 345 8 7
Strata: we could squeeze in another S.E. distribution Latent Variable
curve, by placing the peaks at -4.5, -1.5, +1.5, -4.5 Separation =3 implies 3 error strata
150] Decision-makers say, “We are going to use this instrument to discriminate x levels of performance.”
We might respond, “Fine! based on the sample measure distribution, and the separation pictures, this
instrument can do that.” Or we might say, “This test really does not have the discriminating power for x
many levels of performance, so there will be a lot of mis-classification.”
In language testing it used to be common (maybe it still is) to try to discriminate 10 or so performance-
levels based on a test that only has the statistical power to discriminate 3 or so levels. No one computed
the standard errors for individual measures, so no one knew how arbitrary the classification of
examinees was.
151 How much reliability or separation do we need? It depends what our purpose is, but we nearly always

want to separate high performers from low performers, so a person separation of 2, reliability of 0.8, is
often the benchmark for practical use. But reliabilities are always computed for the current sample,
despite the convention of calling them the “test reliabilities”. Next time the sample will be differently

distributed, so the separation may be different .....
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Measure summary chi-square statistics

153

There are two questions we may ask ourselves about the elements of a facet:

1. Are the measures of the elements in a facet all statistically the same, except for measurement error?
This particularly applies to raters. We want them to have the same leniency. This hypothesis is tested
with the “fixed (all same) chi-square.”

2. Are the measures a random sample from a normal distribution? This particularly applies to large
samples of persons. If they are, we can conveniently summarize them with a mean measure and a
standard deviation. This hypothesis is tested with the “Random (normal) chi-square”.

Model, Fixed (all same) chi-square: 39.1 d.f.: 6 =ignificance (probability): .00
Model, Random (normal) chi-square: 5.2 d.f.: 5 significance (probability): .39

In this example, the hypothesis that the elements have the same measure, apart from measurement error,
has significance p=.00, so this hypothesis is rejected.

The hypothesis that the measures are a random sample from a normal distribution has significance
p=.39, so this hypothesis is not rejected.
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154 Rasch Fit Statistics: Are the Measures Accurate and Effective?
) Wi I [
155| Let’s produce Table 7 for “Junior Scientists”, m e
facet 2 in fit order, ascending: | Oftput Tables & Flots  Cutput Hes - Lraphs  Hep
: Unexpected Observations
Facets analysis window for the Guilford.txt Table 8§ Vertical Rulers
Click on “Output Tables & Plots” menu
Click on “Table 7: Measures” T T e A e e
156 “Table 7 Request” dialog box: =lolx|
Click on “All” to uncheck-mark it. Table 7: Facet Measure Report
Scroll the list ... T Senior scientists (nterraten
. . . . . L] - o
Click on “2 Junior Scientists” to check-mark it Select Facet: || I ' H o
Click on “Measure” to uncheck-mark it
Cl@ck on “Fit order” check-mar}( it Select Arrangement:
Click on “Temporary Output File” N E——— Modiy l Outputic ]
ications Screen
Ascendlng ] ME \
oy [CRormnms | o T G
LS tercer Petmanent
[¥" Omitunohserved elemerts from output Cancel / End l Output File
157 Here is t}}e Table in a NotefPad file. r;;;;; """ ;;;;;;"'E;;;'T;;;;;;;;;;'I """""
Let us think about what this means ... | MnSq 2ZStd MnSq 2zStd|Discrm| PtMea PtExp | N Junior
mmm e +-————- Ho—mm—mm—————— Hm—m———————
Edward has mean-squares Of,1'94’ {194 2.2 1.94 2.2| .34 | .48 | 5 Edward
much larger than the expected 1.0. The ratings of | | 1731 .5 1.37 1.0l .87 | .44 | 4 pavid
Edward underfit the Rasch model. They are too ' -4 : I .16 .46 | 3 chxis
. | .3 | .30 .48 | 7 George
unpredictable from the Rasch measures or | .8 | .40 .43 | 6 Fred
“noisy”. | 3 B Y|
Blue circle: Edward has a high correlation - this —_— —
(13 b 2 _ l’?
llisudagy @fns Eredlctable why’ £ 24 and 23 Always investigate underfit (high mean-squares)
¢ h(l)X. nr;le alsl mean—sqltiarle?) OTﬁ and. ,f before overfit (low mean-squares). Often the
much lower than the expected 1.9. The ratings of | . £ disappears when the underfit is eliminated
Anne overfit the Rasch model. They are too
f from the data.
predictable from the Rasch measures or
“muted”.
158| Blue circle: our investigation! Edward

Hre is a plot of Edward’s ratings and the logit
measures that are modeled to produce them. If
you have some skill with Excel, Appendix 3.
Excel plots from the Residual file explains how
to make this plots for yourself.

Blue line: a strong trend = high correlation.
Orange circle: two observations of “2” are
surprising.

Overall, Edward’s the ratings are much less
predictable (from the Rasch measures) than the

Rasch model expects.

Rating

T T T T
0.1 0.3 0.7 0.9

Logit Measure

T
0.5 0.1
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Edward:

1. “Outfit MnSq = 1.94”, “Infit MnSq=1.94".

The “Outfit mean-square” reports primarily about observations where the combined (summed)
measures are far from zero.

The “Infit mean-square” reports primarily about patterns of observations where the combined (summed)
measures are near to zero.

In Guilford.txt the rating scale is so long (9 categories) that the operational range of the rating scale for
each item is much wider than the spread of the measures. Accordingly Outfit and Infit report essentially
the same results. I prefer to report only Outfit, but some reviewers prefer Infit or both Infit and Outfit.

2. “MnSq = 1.94”
The mean-square is much greater than 1.0, so these ratings are too unpredictable. They underfit the
Rasch model. They twice as much randomness as the model predicts.
Ben Wright explained fit like an old phonograph record.
When the mean-square is close to 1.0, the music can be heard clearly.
When the mean-square is much less than 1.0, the music is muted, muffled. It loses its rich tones.
When the mean-square is much greater than 1.0, the music is there, but so are the pops, rumbles
due to scratches and surface noise. When the mean-square is above 2.0, the noise is starting to
overwhelm the music.
From the plot, we can that the data do not concur about Edward’s performance. The ratings in the
orange circle say that Edward is a low performer, but other ratings say that he is a high performer.
Whichever is correct, the estimated measure is a compromise, so it is an inaccurate estimate of Edward’s
“true” measure.

3. “Zstd = 2.2” in #157 - this is reporting the result of a statistical hypothesis test: “These ratings
conform to the Rasch model.”

4. “Zstd = +...” - indicates that the ratings underfit (too much noise) the Rasch model

5. “=+2.2" - this value is a unit-normal deviate indicating the probability that these ratings conform to
the Rasch model. It is unlikely (p<.05 in Appendix 1) that these ratings are the chance outcomes of a
Rasch process based on the estimated measures.

6. “Do these data fit the Rasch model or not?” - the hypothesis test of fit to the Rasch model reports
“They do not!”. They underfit the model: the mean-squares says the misfit is big, and the Zstd says that
the misfit is unlikely to have happened by chance.

7. “What action do we take?” This depends on the circumstances.

A. The data aren’t perfect - but we expected that.

B. These data underfit the model. They are too unpredictable. Is that a cause of concern for us? Yes, the
measure of Edward’s performance (based on these data) is inaccurate for practical purposes.

C. If this is our first look at the data, always examine high mean-squares (underfit) before low mean-
squares (overfit). This is because the average mean-square is usually forced to be close to 1.0. So
investigate Edward (MnSq = 1.94) before Anne (MnSq=0.24).

D. If we consider that the ratings in the orange circle are not representative of Edward’s general
performance, we might omit Edward from the analysis, or omit those ratings. Then Edward’s
idiosyncrasies won’t impact other aspects of the analysis, such as Anne’s mean-square. A later tutorial
will show us how we can anchor (fix) the other measures at their good values, and measure Edward with
all his ratings.

E. If this is a diagnostic test, then the orange-circled ratings may be the most important ones. They tell
us where to focus our remedial action for Edward to improve his performance.
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160 And here is a plot of Anne’s ratings and the logit Anne
measures that are modeled to produce them. °
Anne has a high correlation and the highest s
overfit. 7 .
. .
Notice how closely Anne’s rating track along the | &° f ; " :
trend line. They are more predictable (from the ! /ﬁ( /
measures) than the Rasch model expects. ’ - M
2
1 T T
-1 0.8 -0.6 0.4 -0.2 0 0.2 0.4
Logit Measure
161, Anne:

2. “MnSq = 0.24”

The mean-square is much less than 1.0, so these ratings are too predictable. They overfit the Rasch
model. They only contain one-quarter of the randomness that the model predicts. In Classical Test
Theory (CTT) this would be considered good. In Rasch this indicates that these ratings contain only
24% of the measurement information that they should. These ratings are inefficient and will cause the
reported standard errors to be too small and the reported reliabilities to be too high. But the measure of
Anne’s performance (based on these data) is accurate.

3. “Zstd = -3.2” - this is reporting the result of a statistical hypothesis test: “These ratings conform to
the Rasch model.”

4. “Zstd = -” - indicates that the ratings overfit.

5. “=-3.2” - this value is a unit-normal deviate indicating the probability that these ratings conform to
the Rasch model. It is extremely unlikely (p<.01 in Appendix 1) that these ratings are the chance
outcomes of a Rasch process based on the estimated measures.

6. “Do these data fit the Rasch model or not?” - the hypothesis test of fit to the Rasch model reports
“They do not!”. They overfit the model, highly statistically significantly.

7. “What action do we take?” This depends on the circumstances.

A. The data aren’t perfect - but we expected that.

B. These data overfit the model. They are too predictable. Is that a cause of concern for us? Yes, ifit is a

roulette wheel. But usually No if it is the performance of a child on an educational test. The measure of

Anne’s performance (based on these data) is accurate for practical purposes.

C. If this is a standard testing situation, then overfit slightly stretches the measures (increases their

range), inflates their reliability and reduces their standard errors. These are technical issues usually not

of concern to anyone other than psychometricians. So it would require very strong external motivation

to omit or alter this set of ratings.

D. If this a rater training situation, low mean-squares are typical of raters “playing it safe” by exhibiting

central tendency or trying to agree with the ratings they think the other raters will give. This is often the

result of training which emphasizes “if you disagree with the other raters too much, you will be fired!”

So, before being concerned about the individual, review the training material and the instructions given

to the raters. Are they explicitly or implicitly being told to agree with each other?

At the Olympic Ice-Skating, the organizers think that “rater agreement = more credibility”, but to
psychometricians, “excessive rater agreement = psychological pressure to agree = loss of objectivity
and fairness”.
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Q. Table 8: Rating Scale Structure

163

Table 8 tells us about the 9-category rating scale of Creativity. It is packed with useful information
about the success of our data collection - information which J.P. Guilford completely overlooked when
he wrote the chapter on rating scales in his book, “Psychometric Methods”.

164

Model = ?B,?Bs?3CREATIVITY
Rating (or partial credit) scale = CREATIVITY,R9,G,0
| DATA | QUALITY CONTROL | STEP | EXPECTATION | MOST |.S Cumul.| Cat|Response]
| Category Counts (um.| Avge Exp. OUTFLIT|CALIBRATIONS | Measure at |PROBABLE|Probabil. |PEAK|Category|
| Score h 4 % | Meas Meas MnSq |Measure S_E.|Category -0.5 | +rom | at |Prob| Name |
........ B U
al ax ax|| -.86 ||-.7a}| .8]| |( -2.70) | low | low |100%| lowest |
4] 4% s8x|] -.11 J)-.58})2.7|| -.64 «53] -1.65 -2.21| | -1.75 | 17%| |
25 2ax 3ax|| -.3e*||-.40} 9| -2.32 .38] -.83 -1.26| -1.48 | -1.39 | as%| |
gl sx 3o%|| -.a3*))-.22| .5]] .83 .25 -.m1  -.66| |  -.86 | 11%] |
31| 3ex eox|| -.04 |l-.03) .8|| -1.48 _.24| .02 -.19] -.32 | -.29 | 39%| middle |
| | | |
| | | |
| |
| |

6] sx 7ax|]|-.a6*]] .17}a.1 1.71 1| .44 .23) .34 o%|
21 20% 94%|] .45 34) .6l -1.00 26| .94 .68| .35 .47 | a7%|
3l 3% 97| .75 .50 .5 2.36 .a4| 1.62 1.24| 1.37 | 16%| |
3] 3% wee%|]| .77 621 .8 .54 .60|( 2.69) 2.17| 1.45 1.70 |100%| highest|
RIS T S—— SV S ———— (Mean)--------- (Modal) - - (Median)---------------

U= - I Y I PR R

165

Blue box: There are 9 categories, 1 to 9. Look at how they have been “Used”, the category frequency
counts. Do you notice anything conspicuous? Yes you do! Only categories 3, 5 and 7 have large counts.
Perhaps the judges, the Senior Scientists, could only discriminate 3 levels of Creativity, but were told to
use a 9-category scale. Over-categorization leads to artificially reduced standard errors, inflated
reliabilities and poor fit to the Rasch model.

166

Red box: We can see evidence of poor fit in the “Average Measure” column. The rating scale is
intended to represent a series of qualitative advances along the latent variable. Each category is assumed
to be a quantitative advance (of a size yet to be determined) beyond the previous category. So, higher
categories should imply higher measures, and higher measures should be observed as higher
categories. But did this happen?

167

The “Average Measures” are the averages of the Our estimation process in Tutorial 1:
measures that combined to produce the observations in By-Di-R, -8 - {Fi} > Xuirs

the category. We expect them to advance with category Average Measure for category “j” =
number. Average (B, - D; - R, - S;) for all X,;s =

168

In Table 8, we can see that the Average Measure for category 1 is -.86. Then for category 2 it is -.11.
Good so far, categories and average measures are advancing together. But the Average Measure for
Category 3 is -.36. The Average Measure has gone backwards, and so is flagged with “*”. This
contradicts our theory about the rating scale.

Green box: the “Expected Measure” column shows what the Average Measures would be if the data fit
the Rasch model. We can see big differences, particularly for Category 6 (-.46 vs. .17). Something is
seriously wrong. What is it?

169

Orange box: Look at the category-level “Outfit MnSq” column. We expect these to be 1.0 or less due to
dependency among the categories of the rating scale. Most mean-squares are in this range. But Category
2, mean-square 2.7, and Category 6, mean-square 4.1, are showing considerably unpredictability.
Another symptom that something has gone seriously wrong with the functioning of the rating scale!
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Let’s look at the rating scale from a graphical
perspective:

On the Facets menu bar,

Click “Graphs”

tFles Graphs |

X

171

The Rasch model has made as much sense of the rating
scale as it can.

The x-axis is the latent variable, drawn relative to the
difficulty of the item.

The y-axis is the probability of observing each category
of the 9-category rating scale.

Categories 3, 5, 7 are observed more often, so they have
higher probability curves. Categories 1 and 9 are the
extreme categories, so the Rasch model extrapolates that
they are the categories most probable to be observed
outside of the range of the data. The rest of the
categories have low probability of being observed.

Model = 7B,78,7,CREATIVITY (Rating or Partial Credit Scale)

Extrapolation

Category Probability
N

"Moasure relative to item difficulty
If you want to know which category a curve
represents, click on the curve.

(Click on the plot background if the plot is
not redrawn correctly.)

172

On the “Graphs” window,
Click on “Prob+Empirical Cat. Curves”

Prob = Probability (as predicted by the Rasch model)

Empirical = Observed (as summarized from the dataset)

Category Probability

4 4 @5 o 0y 1 18 2
Measure relative to item difficulty

173

Prob+Empirical Cat. Curves:

The thinner lines with x’s are the empirical category
frequency lines, summarizing how the rating scale
categories were used. Their colors match the Rasch-
model smooth curves.

Do you see that categories 3, 5, 7 are the only high-
frequency categories? Category 5 peaks in the center,
where it should, but also down at the bottom - weird!

Category Probability

2 175 15 125 1 075 05 025 0 025 05 075 1 125 15 175 2

Measure relative to item difficulty
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174/ Click on “Exp+ Empirical ICC”. This will display the [ Expected
expected (Rasch-model) and empirical (what the data :
say) Item Characteristic Curves, ICCs. These show the
average functioning of the rating scale along the latent
variable. .
175/ The solid red line is the Rasch-Model ideal ICC for T —————
these data. The blue jagged line is what the data say. Confidence Bands S
The green 95% Confidence Bands are the statistical ,
limits of the divergence of the empirical from the ideal, 5
as predicted by the Rasch model. We can see that the ¥
data only just remain within the lines. There is a g
problem at the bottom end of the empirical ICC, ’
matching the problem with category 5 which we saw in
its empirical category curve. Measurs refative to item diffiouty
176 Move the slider below the plot Model = ?B,7B,?,CREATIVITY (Rating or Partial Credit Scale)
to make the empirical summarizing-interval 0.10 logits. :
You will see that now the empirical blue line crosses i
over the confidence bands, which are two-sided 95%
confidence intervals. ’
2.
Even at this level of summarization, the misfit in the f :
rating data are apparent, suggesting that the misfit 13
should be investigated in greater detail in other Tables, &
such as Table 4. Something is seriously wrong with this .
Guilford dataset. J.P. Guilford did not notice it himself,
but we will discover exactly what it is in the next ’
Tutorial. s PR S e
o Measure relative to item difficulty
Play with the “Graphs” screen, clicking different buttons [ETITTITSNPPINPTIN (uvsg RPTRRRILITII
and different slider settings. Do you see anything MR et o] e fomeiene e
intriguing or diagnostically useful for you? - =
177
178 0pti0nal Reading.‘ A Facets Model for Judgmental Scoring
#14 - Knox’s “Cube Imitation” Test - L e e e e ol e e e
http://www.rasch.org/rmt/rmt133j.htm :Md Rrﬁzlmg: ——
#62 - Wright & Panchapakesan (1969) “A Procedure for | s =~
Sample-Free Item Analysis” - Ve F Lot Arecan Sy il Palboigis
MESA Memo 61, written in July 1990 and accepled for a special issue of Applied Measurement in Education, but not published due to lack of
http://www.rasch.org/memo46.htm e
For a conceptual summary of what we have done so far, | o @ e roeesiy
and also a glance ahead, please read “A Facets Model B e e, e s T ) A o P
for Judgmental Scoring” - s o s oy o etz s bttt
http://www.rasch.org/memo61.htm Sl o e a1 e e S R S A e o S TS )
179| Close all windows. x|
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Appendix 1. Unit Normal Deviates

The “normal” distribution is fundamental to statistics. It
describes what happens when events happen “normally”,
purely by chance. The Figure shows the probability of
different numbers of “heads” when a coin is tossed 15

items in the red bars:
http://mathworld.wolfram.com/NormalDistribution.html

We can see that the overall pattern follows a bell-shaped
curve the continuous black line. This pattern gets closer
to a smooth line, the more coins we toss. The black
continuous line for an infinite number of tosses is the
“normal distribution”.

Pg_j [H | 15)
0.2}

0.15:

12

We are interested in a special case of the normal
distribution. We want the one when its mean is zero, and
its standard deviation is 1.0. This is called the “unit
normal distribution”, abbreviated N(0,1). Statisticians use
the Greek letter mu, p, for the mean or average, and the
Greek letter sigma, o, for the standard deviation or
spread, so the general normal distribution is N(L, o).
Look at the plot, the values along the x-axis at labeled
“z”, these are unit normal deviates. The area under the
red curve indicates the probability of observing those
values. http://faculty.vassar.edu/lowry/ch6pt1.html

68% of the area under the is within 1 S.D. of the mean, so
we expect about 2/3 of the values we observe to be
statistically close to the mean.

2456 7 8 5101112131415
S0,0% 50,0%
15,27% 15,27%

z=-1 14| z =+1.14

We are usually concerned about values far away from the mean on either side (2-sided). The Figure it says
that 2.28% of the area under the curve is to the right of +2, and 2.28% is less than -2. So, when we sample
from random behavior modeled this way, we expect to encounter values outside of +2 .0 only 2.28%+2.28%
=4.56% of the time. This is less than the 5% (in other words, p<.05) that are conventionally regarded as

indicating statistical significance.

The precise value of probability < .05 is

z> [£1.96| for p <.05

and for probability < .01 is

z> [£2.58| for p <.01

Handy table of unit normal deviates (z) and probabilities
(p) for a “two sided z-test”, also called a
“two-sided #-test with infinite degrees of freedom”

Zstd values also use this probability table:

7 >

+2.58
+2.33
+2.17
+1.96
+1.64
+1.28
+1.04
+0.84
+0.67

p<
0.01
0.02
0.03
0.05
0.10
0.20
0.30
0.40
0.50
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But, remember, just because a value is statistically significant doesn’t mean that it is wrong. We do expect to
see those values occasionally. The question to ask ourselves is “Why now?”

What if we don’t have a unit-normal distribution? We can
often approximate it by taking our set of numbers, our (the data - their mean)/(their standard deviation)
data, subtracting from them their mean (arithmetic — N(0,1)

average) and dividing them by their standard deviation)

Residuals from our data, {R,;}, have a mean of zero, and
a modeled standard deviation of V" so the standardized {Rui / Vai} = {Zyi} — N(O,1)
residuals {Z,;} should approximate N(0,1)
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Appendix 2. Chi-square, mean-square and degrees of freedom

We talked about the unit-normal distribution in

Appendix 1. And have discovered that the

standardized residuals {Z,i} approximate N(0,1), the

unit-normal distribution. So, what happens when we

accumulate them? : ‘ S~y =

Add two unit-normal distributions:
N(0,1) + N(0,1) =N(O0, 2)
The average stays the same, but they spread out
more. The combined distribution has twice the
variance of .a unit-normal distribution:

But what if we square the unit- normal distribution?

N(0,1) is called the “chi-square distribution with 1 Lo[

2 . .
degree of freedom”, shortened to X . It is the black M(0.1)" = Chi-square with 1 degree of freedom

curved line on the plot. Its mean is its degrees of
freedom, indicated by the black vertical line going up
from 1.

2
We can add two of these N(0,1)*+ N(0,1)*= x'Z .
This has two degrees of freedom, d.f., and is shown by
the blue curve on the plot. 3dF
We can keep adding more. So, when we have added
“k” squared (unit normal distributions) we have a chi-

square distribution with k d.f., sz. It has a mean of k S0 1 2
and a variance of 2k, so a standard deviation of V (2k).

f
44t 54f .
. 3 . 4 . 5 6 8

Since the mean of chi-square statistic is its d.f, it is
convenient to divide the chi-square by its d.f., so that
its value can be compared with 1.0. This makes
scanning a Table of fit statistics much easier than
when chi-square statistics with their d.f. are reported.

Mean-square = sz /k
Mean-square << 1 is over-fit, dependency, over-
parameterization, over-predictability

Mean-square >>1 is under-fit, noise, misfit, lack of

predictability
Facets reports the significance (probability) of a ZStd = Wilson-Hilferty (mean-square, d.f.)
mean-square as a unit-normal deviate (Zstd). see http://www.rasch.org/rmt/rmt162g.htm
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Appendix 3. Excel plots from the Residual file

Here is how you can produce Excel plots from the _
Facets “Residuals file”. This needs some skill with
Excel.

Rﬁidual output file Request oy il
Facets Analysis window Response-level cutput file |®Fgeee|| ey

b (13 . 2
Clle OIl “Output Flles ., Select Flle Format: |7 Include ci nhead\n?S IT
Click on “Residuals/Responses file W bt g o e

(" Tah-separated fields

(" Character-separated fields: character is IT I Help Gutputto Excel Temporary
" . Output File

y . 9 1 ® Fixed-length fields
ReSIdual Output ﬁle RequeSt dlalog bOX Status: ¥ Respaonses used far estimation Farmanant
Clle on “Output tO EXcel” [ Responses not used for estimation Sl=lE l Chisihe SPSSI I Output File

Excel Worksheet: =P RRO-C.EEE = ROt V:’m: el non-co
Click on the worksheet

General ~| | 2 conditional Formatting ~ || J=Insert - || X -
“S 1 All” C 1+A $ - % ||| EZ Format as Table 3 pelete - || (8] - .
€ GCt tI’ P S Cell Styles ~ [ Format ~ || 2 - &
“Sort and Filter” - ‘ ‘
113 9 VI 8 c D 3 F & H ] ] K L M N o
( uStO| N DOT l 1[oks s Bxp  Res  Var  StRes Wt Prob  Logit 1 2 3 Senior scie lunior Scie Traits
2 g 5 534 03 241 02 1 0974 016 1 1 1 Avogadro Anne  Attack
T . h d : 3 H 5 503 003 242 0.2 1 09465 003 1 1 2 Avogadro Ame  Basis
Op TOW 1S nhea lngS 1 3 3 a3 A2 225 08 1 1104 031 1 1 3 Avogadro Ame  Clarity
s H 5 539 039 24 025 1 09782 048 1 1 4 Avogadro Amne  Daring
S rt f ld . 6 3 3 36 0.6 198 0.43 1 -0.8364 0.6 1 1 5 Avogadro Anne  Enthusiasm
(6} 1€1as: 7 9 9 68 213 18 156 1 19162 087 1 2 1 Avogadro Betty  Attack
. M5 8 7 7 663 037 197 026 1 07822 074 1 2 2 Avogadro Betty  Basis
9 5 5 59 09 229 459 1 11168 04 1 2 3 Avogadro Betty  Clarity
The facet number you want, ascending, e.g., “2 T - i B s =
. . « o9 1 5 5 52 02 24 013 1 09543 01 1 2 5 Avogadro Betty  Enthusiasm
Th _ 1 W t d I t 12 3 3 4% 49 281 123 1 15647 0.02 1 3 1 Avogadro Chris Attack
€ X-axis value you an 9 ascen 1ng7 e'g' ’ Ogl 13 3 3 46l 6l 236 -105 1 a3 01 1 3 2 Avogadro Chris  Basis
14 3 3 384 084 209 058 1 09219 049 1 3 3 Avogadro Chris  Clarity
O B 15 7 7 a7 208 241 131 1 6426 001 1 3 4 Avogadro Chris  Daring
16 1 1 327 227 181 168 1 21605 078 1 3 5 Avogadro Chris  Enthusiasm
. 7 7 7 44 26 231 171 1 21951 0.3 1 4 1 Avogadro David _ Attack
The Worksheet ls SO l‘l ed 18 3 3 411 111 221 075 1 1045 036 1 4 2 Avogadro David  Basis

Scatterplot: Anne

“Series name” is the element label you want in facet 2. , o
x-axis values are the “Logits” (or whatever) for the

element you want in facet 2 \_.._17

y-axis values are the “Obs(ervations)” (or whatever) "

4
_/\ / N —4— Anne
-

for the element you want in facet 2 - < 3
Excel produces a plot E

-1 -0.8 -06 -04 -02 0 02 04
Use Excel tools to customize your plot. Anne

Be exuberant! With a little time and talent, this 8

becomes fun. ! =

-1 0.8 0.6 0.4 0.2 0 0.2 0.4

Logit Measure
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