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# 
Many-Facet Rasch Measurement : Facets Tutorial 

Mike Linacre - 1/2012 

1. Tutorial 2. Fit analysis and Measurement Models 

Welcome back! 

 Observations, expectations and residuals  

 Quality-control fit statistics elements and observations  

 Reliability indexes and inter-rater reliability 

This tutorial builds on Tutorial 1, so please go back and review when you need to.  

2. A. Facets Specifications and Data: The Knox Cube Test 

3. Let’s launch Facets again 

 

4. To start with we’ll look at an analysis that’s about as simple as 

it gets: 2-facets, dichotomous. 

Click on “Files” 

Click on “Specification File Name?” 

 

5. Click on “Kct.txt” and “Open” 

or Double-Click on “Kct.txt” 

“Extra Specifications” - click on “OK” 

“What is the Report Output file name” - click on “Open” 

 

This is the “Knox Cube Test” data in “Best Test Design” 

(Wright & Stone, 1979, MESA Press). 

The Knox Cube Test was devised by Dr. Howard Knox on 

Ellis Island in New York harbor (next to the Statue of Liberty). 

It was used to screen immigrants arriving by ship from 

Europe. It assesses attention-span and short-term memory. 
 

6. The Estimation and initial reporting completes. 

We will be particularly interested in Table 4.1 “Unexpected 

Responses”, but first let’s look at what this analysis is all about 

.... 
 

7. Click on “Edit” menu 

Click on “Edit Specification = ... Kct.txt” 

 

8. We know what most of this means: 

; starts a comment.  I wanted to mention “Kct.txt”, the name of 

the specification file.  

TITLE= is title line at the top of each output table 

Facets = 2 - there are two facets: children and items 
 

 

http://www.rasch.org/btd.htm


 2 

9. Positive = 1 - the first facet (children) have positive ability: 

more score = more measure. The second facet, items has the 

default setting, negative difficulty, more score = less measure. 

You have probably realized that the order of the specifications 

doesn’t matter, except that we need to specify Facets= early in 

the specification file.  

10. Noncenter=1 

Something that must be decided in all measurement is where to measure from. For short distances, we 

measure length from the end of the tape measure. For mountains, from sea level. For temperature, from 

freezing point of water for Celsius, but from freezing point of salt water for Fahrenheit. It is the same in 

Rasch measurement. The measuring convention is that we measure from the center (mean) of the 

measures for each facet. So item difficulties are measured from the center, the local origin, of the item 

facet. The average item has a difficulty of 0 logits. Judge severities are measured from the center, the 

local origin, of the judge facet. The average judge has a severity of 0 logits. We do this for all facets 

except one, usually the person ability facet. The person abilities are measured from the local origins of 

all the other facets. If the average ability is high, then the average person has a positive logit measure. If 

the average ability is low, then the average person has a negative logit measure.  

So all facets have their local origin at their centers, except one facet. 

Noncenter=1 ;  the first facet (children) does not have its local origin at its center. 

11. Pt-biserial = Yes - report the point-biserial correlation in the 

measure tables, Table 7. These may not make much sense if 

the data are incomplete (so there are missing observations). 

This dataset is a complete rectangular dataset. 

Vertical = this controls the facets to display in Table 6, the 

vertical rulers. 

Yard =  this controls the size of the display in Table 6. 

Recommendation: Use the Output Tables pull-down menu to 

play with different settings of Vertical= and Yard= for Table 

6, until you find settings that you like.  

12. Model = ?, ?, D 

There is only one model specification, so it can be on the same line as Model=. “?” means “any element 

of the facet”. The first “?” is for facet 1. The next “?” is for facet 2. So this model specification says: 

“Any element of facet one can combine with any element of facet two to produce an observation on a D-

type scale”. “D” means “dichotomous 0-1 scale”. So Facets expects to see 0’s and 1’s in the data file. 

Anything else is treated as a missing value and ignored. 

13. Labels = defines the facet names and the elements in the facets. 

1, Children - the label or name of the first facet is “children” 

1-17=Boy,,1 - after the facet name comes the list of elements. In this facet, element numbers 1 to 17 are 

all labeled “Boy”. They could be given individual labels if desired. “,,1” means “the boys are part of 

element group 1”. So a measure Table with totals will be produced for the boy group. 

18-35=Girl,,2 - element numbers 18 to 35 are all labeled “Girl”. They could be given individual labels if 

desired. “,,2” means “the girls are part of element group 2”. So a measure Table with totals will also be 

produced for the girl group. 

* - element lists end with “*” 
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14. 2, Tapping items - the label of the second facet is “Tapping items”. The Knox Cube Test requires the 

participants to tap on items, (see Optional Reading at #178).  

1 = 1-4 - the first item is labeled “1-4”. That item requires the children to tap cube 1 and then cube 4.  

Recommendation: Choose item-labels that are meaningful to you, so that the Facets reports and maps 

have a useful message. 

15. 18=4-1-3-4-2-1-4 is the last item label. The pattern has 7 taps. 

* ends the element list and the facet list 

Data= starts the data 

An example of entering the data one observation at a time: 

1,1,1 - facet 1 element 1 combines with facet 2 element 1 to 

produce an observation of 1.  

An example of  entering the data using indexing: 

1,2-18,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0  facet 1 element 1 

combines with facet 2 elements 2 to 18 to produce 

observations of 1 (for facet 2 element 2), of 1 (for facet 2 

element 3), .... , of 0 (for facet 2 element 8), ....... , of 0 (for 

facet 2 element 18) 
 

16. Let’s use indexing from here on ... 

35, 1-18, 1,1,1,1, .... - the observations for facet 1 element 35 

(a girl according to the Labels=) for facet 2 elements 1 to 18, 

are 1, 1, 1, 1, ........ 

The Data= instruction ends at the end of the file.  

17. Take a look at the data. Which observations accord with the 

Rasch model and which observations contradict it? It is 

usually difficult to judge by eye. 

red box:  I’ve marked an observation that might be a “lucky” 

success .... but I’m not sure. It is for child 2, item 14.  

blue box: Can you pick out an “unlucky failure”? We will see 

how good we are doing misfit detection by eye .... 

green box: another lucky guess for child 9, item 13? 
 

18. Now close the Kct.txt Edit window.  

19.  
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20. B. Table 6: The Knox Cube Test Measures 

21. Let’s produce a version of Table 6, the vertical rulers 

which tells us what we will need to know. 

In the main Facets window,  

click on “Output Tables & Plots” 

click on “Table 6: Vertical Rulers”  

22. Kct.txt has: “Vertical=1*,1A,2N,2A”  

But we want to display the first facet, the children, by 

element number: 1N 

the second facet, the items by element number, 2N 

and by element label (the tapping pattern) 2A 

so the specification is: 

Vertical = 1N, 2N, 2A 

We can specify this by typing 1N, 2N, 2A in the 

Vertical= box. 

Then click on “Temporary Output File”  

23. Table 6 displays.  

At first it was too big for my screen and somewhat faint, 

so (just like in Tutorial 1) I went to the NotePad menu 

bar, and used the Format pull-down menu to change the 

Font and the Size. Mine is “Courier New” 8-point. 

For sizes smaller than 6 points, type the size into the 

NotePad font size box. 

In NotePad: 

 

24. In Table 6, at the extreme left is the measurement scale, 

“Measr”, in logits. It is -5 to +5, a typical range. This is 

not pre-set. It is estimated from the pattern of the data. 

 

blue box: The children are shown with many of them 

just below 0 logits. This is the mode of their distribution. 

The column heading is “+Children”. “+” means “more 

score ↔ more measure”. So the most able (highest 

scoring) children are at the top. They are 27 and 30. 

 

In the third column, the items are shown by element 

number. The fourth column shows them by label. The 

column is headed “-Tapping items”, so  

“more score ↔ less measure.” 

The lowest scoring items (least success by the children) 

are at the top. These are the most difficult items. The 

easiest items are at the bottom.  
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25. Do you notice any flaws in this version of Knox’s test? Here is one ... 

Red box in #24: There are 12 children in the middle of the range (children 2, 3, 4, 13, ...), but no items at 

their level. If the test is intended for children like those in this sample, it needs more middle-difficulty 

items. Can you imagine some extra items that might go in the red box in #24? They will be more 

difficult than the items below the red box, but easier than the items above the red box. 

green box: Now look at the top of the item columns. There are 4 items that are much too difficult for 

this sample.  

orange box: And at the bottom there are three items that are somewhat too easy. These extreme items 

waste everyone’s time, and they may make the children frustrated or over-confident. 

In their book, “Best Test Design”, Wright & Stone improve this test. 

26. C. Table 6: Measures and Expectations 

27. Now look at person 5 in #24. His measure is +2 logits. 

What do we expect to happen when he encounters item 

13, also at +2 logits ? The child has the same ability as 

the item has difficulty. We don’t know what will 

happen.  The child’s probability of success is 0.5 

 

 

28. What about when child 9 of ability +1 logits attempts 

item 13 of difficulty +2 logits. Child 9 is less able than 

the item is difficult so the child will probably fail. But 

what is the child’s exact probability of success? .4, .3, ..?  

29. We can compute the probability of success from the 

Rasch model for dichotomous observations (Tutorial 1). 

Let’s fill in the values: Bn = +1, Di = +2 

loge(Pni/(1-Pni)) = Bn - Di 

loge(Pni/(1-Pni)) = +1 - +2 = -1 

30. Rearrange the algebra. (If you are not sure about “e”, 

please review Tutorial 1, Appendix 3). 
Pni = e

-1
 / ( 1 + e

-1
 )  

= 1/2.718 / ( 1 + 1/2.718 ) 

= 0.37 / 1.37 = .27 

= 1 success in every 4 attempts 
31. The probability of success when child 9 of ability +1 

logits attempts item 13 of difficulty +2 logits is p = .27. 

32. Logit-to-Probability Conversion Table 

Here is a Table to guide you when you convert 

dichotomous logit differences into percents (or 

probabilities) of success. 

 

green text: Our difference is -1 logits. Look half-way 

down the right-hand pair of columns. -1.0 logits is 27% 

chance of success, which is the same as p=.27. 

 

Notice these useful values: 

1.1 logits difference = 75% chance of success 

2.2 logits difference = 90% chance of success 

3.0 logits difference = 95% chance of success 

Logit diff. % Success 

 5.0 99%  -5.0 1% 

 4.6 99%  -4.6 1% 

 4.0 98%  -4.0 2% 

 3.0 95%  -3.0 5% 

 2.2 90%  -2.2 10% 

 2.0 88%  -2.0 12% 

 1.4 80%  -1.4 20% 

 1.1 75%  -1.1 25% 

 1.0 73%  -1.0 27% 

 0.8 70%  -0.8 30% 

 0.5 62%  -0.5 38% 

 0.4 60%  -0.4 40% 

 0.2 55%  -0.2 45% 

 0.1 52%  -0.1 48% 

 0 50%  -0.0 50% 
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33. We have the logit measure for every child and every 

item. They are displayed in Table 6 (pictorially) and 

Table 7 (numerically). So we can use the Rasch 

dichotomous model to compute probability of success 

for every child on every item. These probabilities are the 

“expected” observations. 

For dichotomous, 0 or 1, data,  

probability of success →  

the expected value of the observation 

34. Think of this in terms of frequency. What would we 

expect if 100 people of the ability of child 9 attempted  

item 13? 

100 attempts at item 13 by ability of child 9. 

Logit difference = -1, Percent success = 27% 

Expect: 27 successes out of 100 attempts 

Expected value of 1 attempt = 27/100 = .27 = 

Rasch-model probability of success 

35.  
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36. D. Rasch Theory: Observations, Expectations and Residuals: 

Response-level fit of the data to the Rasch model 

37. Here is the Knox Cube Test data again: 

 

The principles of fit are easier to explain with 

dichotomous data than with polytomous data, so that is 

why we are starting here. 

 

38. Child 9, item 13, is marked in green. The child scored 

“1”, a success! 

the observation: 

Xni = X9,13 = 1 

39. We’ve already discovered in #28 that Child n=9 (ability 

b = 1 logit) is less able than item i=13 (difficulty d = 2 

logits): b - d = -1, Pni = 0.27 

the expectation =  

Eni = Pni = e
b-d

/(1+e
b-d

)  

= e
-1 

/ ( 1 + e
-1

 ) = 0.27 

40. The difference between the observation and its 

expectation is the “residual” (what is left over). This is 

the part of the observation we did not expect to see ... 

the residual: 

Rni = Xni - Eni = 1 - 0.27 = 0.73 

41. We know that what we will see in the KCT data are 0’s and 1’s, but they are not the expected values. 

The expected values are numbers like .68 and .34. So there are almost always residuals.  

There is a further question to ask, “Are we surprised about the size of the residual, or is it about the size 

of the discrepancy we were expecting to see?” 

There are two aspects to what we expect: 

1. The expected (average) value.  

2. The expected variation of the observed around its expected  value. This is called the “model 

variance”.  

 

Think of 100 people like child 9 attempting item 13. We expect 27 successes. The expected (average) 

value is 27/100 = .27. But we also expect to see 27 1’s and 73 0’s. So there will be residuals! 

Here is a technical computation: 

the sum-of-squared-residuals = sum of (observation - expectation)
 2

 

= (count of successes)*(success - expected value)
2
 + (count of failure)*(failure - expected value)

2 

= (success count)*( 1 - expected value)
2
 + (failure count)*(0 - expected value)

2
 

= 27*(1 - .27)
2
 + 73*(0 - .27)

2
 = 27 * .73

2
 + 73 *.27

2
 = 100 * .27 * .73 = 19.71 

 

the model residual variance = Vni = sum-of-squares / count of residuals 

Vni  = 19.71 / 100 =  0.1971 

the model residual standard-deviation = square-root (variance) = √(Vni) = √(0.1971) = 0.44 

= the size of the splatter of the observations around their expected values. 

42. With these numbers, we can calculate how unexpected 

is our residual, Rni . The standardized residual, Zni , is as 

unexpected as the unit normal deviate [see Appendix 1. 

Unit Normal Deviates of this tutorial]. 

standardized residual = 

Zni = Rni / √(Vni) 
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43. In our example, X13,9 = 1,  the residual Rni = 0.73, the 

residual S.D. = 0.44, so that the standardized residual, 

Zni, is 1.66. This is as unusual as a unit normal deviate 

of 1.66, p ≈ .10 (see Table in Appendix 1), but not 

unusual enough (p<.05) to be considered significantly 

misfitting the Rasch model. 

Rni = 0.73, Vni = 0.1971, √(Vni)= 0.44,  

Zni = 0.73/0.44 = 1.66; p  ≈ .10 

44. Now let’s look at the observation I ringed in red in #37: 

Child 2 on item 14. According to Table 6 (see #24), 

Child 2 has an ability of about -0.25 logits. Item 14 has a 

difficulty of about 3.37 logits. 

Logit difference (child - item) = 

 -0.25 - 3.37 = -3.6 logits 

Probability of success (Table in #32) = 3% 

45. We observed a success, so Xni = 1.  

Expectation = 3% success = .03 (we are rounding the 

computations 2 decimal places for clarity) 

Now we can compute the residual and the standardized 

residual. 

The residual, Rni, is .97 (very large) 

and the standardized residual, Zni, is 5.60 (very 

unexpected), p<.01. 

Observation: Xni = 1 

Expectation: Eni = Pni = .03 

Residual: Rni = Xni - Eni =1 - .03 = 0.97 

Model variance of the observation around its 

expectation:  

Vni = Pni*(1-Pni) = .03*.97 = .03 

Standardized residual:  

Zni = Rni /√( Vni ) = 0.97 /√(.03)
 
= 5.60 

46. E. Table 4: Unexpected Responses 

47. We could go through this computation by hand for every 

observation, but it is easier to have Facets do it for us. 

Click on the Facets Report output file on your Windows 

Taskbar 

(or click on Facets “Edit” menu, click on “Report output 

file”) 

Scroll down to Table 4. It is the last Table. It shows the 

unexpected responses (or unexpected observations) 

 

48. Green box: Facets has done the computation for Child 2 

on Item 14 more precisely than I did. It reports that the 

standardized residual (StRes, Zni) is 6.2. This is the most 

unexpected observation in these data. The observation is 

unexpectedly high (1) compared with its expected value 

(.0) 

49. Red box: Look at the next two observations listed in Table 4. Both are on item 7 and they are equally 

unexpected StRes = -6.1. The minus - sign means “they did worse than we expected.” Both children, 2 

and 24, failed on the item when we expected them so succeed. We don’t know why, but if we were 

serious about the children or the instrument we might inquire. The tapping pattern includes the sequence 

4-3-2. Perhaps the examiner sped-up unintentionally, or perhaps he didn’t clearly tap each cube so the 

children saw 4-2 instead of  4-3-2. 

 

The list of unexpected responses nearly always contains useful messages about the instrument, the 

sample, the judges, the dataset, or whatever ..... 
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50. F. Table 7: Quality-control fit statistics elements and observations 

51. Looking down the list of unexpected responses is somewhat like looking at the pot-holes in a road. You 

want to pay some attention to them (not too much, usually), but they don’t tell you much about the 

surface of the road as a whole. For that we need to take a wider look. 

52. Scroll back up the Kct.out.txt Report Output file to Table 7.2.2. - the measure Table for Items in fit 

order, descending, or output a new copy of Table 7 from the “Output Tables” menu. 

red box: You will see 4 columns: Infit and Outfit, MnSq and Zstd. These are quality-control fit statistics. 

They are central to the evaluation of the quality of the data for the construction of measures.  

53. 

 

54. How well do the observations of each element fit with the estimate of the its measure?  

If the fit is good, then we can have confidence that the measure means what it says.  

If the fit is bad, then the measure could mislead us.  

If the fit is too good, then perhaps something is constraining the data to be too coherent. 

If the fit is too bad, then those data could also be damaging the measures of other elements. 

55. So we have the process of fit evaluation. In Facets, most fit 

statistics are based on summarizing the residuals that we’ve 

already thought about one at a time. 

 

Data → Measure Estimates →  

Expected Data → Residuals → 

Fit statistics →  

Validity of Measure Estimates 

56. Imagine that we administer a dichotomous test in which the 

items are ordered from easy to difficult. What would we expect 

would happen when a typical person takes the test?  

Success on the easy items ! Failure on the hard items  .  

And a transition zone  where the items are about as difficult 

as the person is able, so we expect to see some successes and 

some failure.  

This is what has happened with the top left response-string in 

the Table in #Error! Reference source not found.: 

“1110110110100000”. And this is also the pattern that the 

Rasch model predicts: “There is nothing so practical as a good 

theory” (Kurt Lewin, 1951, p. 169) 

Person Responses: 

Easy -- Items -- Hard 
1110110110100000 
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57. So, how can we verify that this response string does match Rasch expectations? We do this using mean-

square fit statistics. A mean-square is a chi-square divided by its degrees of freedom [see Appendix 2. if 

chi-square sounds like Greek to you ...]. Let’s start with chi-square fit statistics .... 

58. Chi-square fit statistics are very useful for diagnosing the standardized residuals. The standardized 

residuals are modeled to be unit normal deviates. So when we square them and sum them, we expect 

their sum will approximate a chi-square distribution with mean equal to the count of the standardized 

residuals.  

If the chi-square value is much above the count, then the standardized residuals are further away from 0, 

on average, than the Rasch model predicts. The observations are farther from their expectations than the 

Rasch model predicts. The data are too unpredictable, “noisy”. They “underfit” the Rasch model. 

If the chi-square value is much below the count and so much closer to zero, then the standardized 

residuals are closer to 0, on average, than the Rasch model predicts. The observations are closer to their 

expectations than the Rasch model predicts. The data are too predictable. The unexpectedness in the data 

is “muted”. The data “overfit” the Rasch model. 

The value of the chi-square, along with its degrees of freedom, enable us to compute how unlikely these 

data are to be observed by chance when the data fit the Rasch model. When we deem the data too 

unlikely to have occurred by chance, then we declare that “the data misfit the model”. 

59. Chi-square statistics are useful for quantifying the 

fit of the data to the Rasch model, but we can 

make them even more convenient.  The expected 

mean of a chi-square distribution is its “degrees of 

freedom”, the number of independent squared 

unit-normal distributions it represents. If we 

divide a chi-square value by its degrees of 

freedom, then we have a mean-square value. 

chi-square χ
2
 / degrees of freedom (d.f.) 

= mean-square (MnSq) 

mean (expectation) of MnSq = 1.0 

model variance of MnSq = 2 / d.f. 

standard deviation of MnSq = √(2/d.f.) 

 

The expected value of a mean-square is 1.0 

60. G. Rasch Theory: “The data misfit the model!”  

61. Are you surprised by that statement? Many statisticians would be. Descriptive statistics are based on 

summarizing the data efficiently and parsimoniously. The data are considered to be the given (Latin 

“datum”) truth. The statistical model (regression, ANOVA, etc.) is intended to describe the dataset. So a 

good descriptive statistical model is one which fits the data. If the model misfits the data, then try a 

different descriptive model. 

Rasch is a prescriptive statistical method. The Rasch model gives us what we want (additive measures 

in a unidimensional framework), so it is our “truth”. The data may, or may not, contain the information 

that we need. So good data fit our Rasch model. If the data don’t fit the model usefully, then the dataset 

as a whole doesn’t support unidimensional measurement. Some part of the dataset may. In fact, usually 

most of a dataset does, if it is intended to capture one latent variable. 

Thought: Raw scores are the “sufficient statistics” for a Rasch analysis. If the dataset doesn’t conform to 

Rasch analysis, then it doesn’t conform to raw-score analysis either ! (But CTT analysts usually do not 

know this). Raw-score fit analysis tends to be superficial, so the misfit in the dataset to a raw-score 

Classical Test Theory model is often overlooked. 

62. We have now had 40 years experience with mean-squares since Wright & Panchapakesan (1969) 

proposed them for Rasch usage (see Optional Reading at #178). The following Tables summarizes them 

from a Rasch measurement perspective. 
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63. H. Table 7: Interpretation of Element-level Mean-Square Fit Statistics: 

Mean-square Interpretation 

>2.0 
Distorts or degrades the measurement system. (The background noise is starting to 

drown out the music.) 

1.5 - 2.0 
Unproductive for construction of measurement, but not degrading. (The background 

noise is audible, but not intrusive to the music.) 

0.5 - 1.5 Productive for measurement. (Beautiful music) 

<0.5 
Less productive for measurement, but not degrading. May produce misleadingly good 

reliabilities and separations. (Music too quiet) 

64. 
Person Responses: 

Easy -- Items -- Hard 

Diagnosis 

Pattern 

OUTFIT 

Mean-square 

INFIT 

Mean-square 

Point-

Measure 

Correlation 

111¦0110110100¦000 

111¦1111100000¦000 

000¦0000011111¦111 

011¦1111110000¦000 

111¦1111000000¦001 

101¦0101010101¦010 

111¦1000011110¦000 

111¦1010110010¦000 

111¦0101010101¦000 

111¦1110101000¦000 

111¦1111010000¦000 

Right ¦ Transition ¦ Wrong 

Modeled/Ideal 

Guttman/Deterministic 

Miscode 

Carelessness/Sleeping 

Lucky Guessing 

Response set/Miskey 

Special knowledge 

Imputed outliers * 

Low discrimination 

High discrimination 

Very high discrimination 

1.0 

0.3 

12.6 

3.8 

3.8 

4.0 

0.9 

0.6 

1.5 

0.5 

0.3 

1.1 

0.5 

4.3 

1.0 

1.0 

2.3 

1.3 

1.0 

1.6 

0.7 

0.5 

.62 

0.87 

-0.87 

0.65 

0.65 

0.11 

0.43 

0.62 

0.46 

0.79 

0.84 

 
high - low - high 

OUTFIT sensitive to 

outlying observations 

>>1.0 

unexpected 

outliers 

>>1.0 

disturbed 

pattern 

  

 
low - high - low 

INFIT sensitive to 

pattern of inlying 

observations 

<<1.0 overly 

predictable 

outliers 

<<1.0 

Guttman 

pattern 

  

 

65. Look back at the Table above. 

The mean-squares for our imagined typical respondent 

are near to 1.0 - good!  

66. What about the “lucky guesser” who succeeded on the 

most difficult item. The OUTFIT mean-square is 3.8, 

much bigger than 1.0. That lucky guess has degraded the 

guesser’s measure. It is less secure as a basis for 

inference. Do we really want “guessing for success”? 
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67. I. Table 7: Outfit vs. Infit 

68. Did you notice that the INFIT mean-square for the 

lucky-guesser is 1.0, its expected value? 

What is going on? 

The Outfit statistic is outlier-sensitive. 

The Infit statistic is sensitive to patterns in the 

targeted responses. It is inlier-pattern sensitive.  

69. Take a look at “special knowledge”.  

Imagine the items are in 4 cluster of difficulty: addition, 

subtraction, multiplication, division. 

Then most children will follow the typical Rasch 

pattern. But those who are taught: addition, 

multiplication, subtraction, division will have a different 

pattern: fail on subtraction, succeed on multiplication.  

Special knowledge or Alternative curriculum 

 
Add-Subtract-Multiply-Divide 

70.  The OUTFIT statistic is 0.9 (less than 1.0). The Outfit 

statistic reports that responses far from the person ability 

are predictable. 

The INFIT statistic is 1.3, reporting the patterns in the 

data are somewhat unpredictable. The Infit statistic 

detects the unexpected pattern of responses near the 

person ability.  

 

71. Mathematically, the OUTFIT Mean-square is the 

conventional statistical chi-square divided by its degrees 

of freedom.  

The Infit statistic is an information-weighted mean-

square statistic. 

For the N observations that we are 

summarizing in the mean-square statistics: 

Outfit Mean-square = Σ (Rni
2
 / Vni) / N 

Infit Mean-square = Σ (Rni
2
) / Σ Vni 

72. Glance back at Table 7.2.2. It should be starting to make 

more sense to you.  

Red arrow: Item 7 has the biggest Outfit mean-square, 

MnSq, statistic: 2.25. This is much bigger than the 

expected mean-square of 1.0. There is more “unmodeled 

noise” than useful “statistical information” in this item. 

Green arrow: Item 14 has the second biggest Outfit 

MnSq: 1.48.  
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73. Red box: Item 7 (biggest OUTFIT mean-square) has two 

unexpected responses in Table 4.1 

Green box: Item 14 (second biggest Outfit MnSq) has 

only one response in Table 4.1, but it is the most 

unexpected response. This is the most outlying response. 

 

We see that the unexpected responses in Table 4.1 

can cause the Outfit MnSq statistics in Table 7 to be 

large. Start by looking at the Outfit statistics in Table 7 

to localize the problem areas in the data. Table 4 tends 

to be too detailed.  

 
 

In big datasets, Table 4 can be come 

unmanageably long (which is why it is after 

Table 8 in the Report output file) 

74. Diagnosing misfit: 

Large OUTFIT mean-square > 1.5 - Unexpected off-target observations - Look at Table 4 

Small OUTFIT mean-square < 0.5 - Off-target observations too predictable - Are there imputed data or 

other constraints? 

Large INFIT mean-square > 1.5 - Unexpected patterns in on-target observations - Very difficult to 

investigate.  

Suggestion: Write out the residual file to Excel. Sort on person (or item, etc.) element number 

and “logit”. Look at patterns in responses near logit 0. 

Small INFIT mean-square < 0.5 - On-target observations too predictable - Are there redundant items or 

response sets in rated items? 

75. J. Table 7: Misfit: Size vs. Significance: MnSq vs. Zstd 

76. We know that a large mean-square statistic flags unexpectedness in the data. But is this an unusual 

amount of unexpectedness, or merely a reflection of the randomness in the data which the Rasch model 

requires?  The Zstd statistics (mean-squares standardized as z-statistics) answer this. 

The Outfit and Infit Mean-squares are derived from chi-square statistics with their d.f.. So we know how 

unlikely we are to observe any particular mean-square value (or worse). This is what the Zstd statistics 

report.  

77. We could report the probability of the mean-square.  

Computing the actual d.f. is complicated, so let’s 

assume the mean-square value is a chi-square with 1 d.f. 

Item 7: Outfit MnSq = 2.25 

chi-square = 2.25 with d.f. = 1 

probability ≈ 0.13 

78. Our experience is that small probabilities become long 

numbers that are often difficult to think with. So instead 

of reporting the probability, we report the equivalent 

unit-normal deviate [see Appendix 1], called Zstd, “the 

mean-square statistic standardized like a Z-score”. This 

is also a Student’s t-statistic with infinite d.f. 

Item 7: Outfit Zstd = 1.1 

probability = 0.14 

79. Reporting Zstd simplifies interpretation. 

See Appendix 1 for more Zstd values. 

|Zstd| ≥ 2.0 are statistically significant 

|Zstd| ≥ 2.6 are highly significant  

80. So, the rule-of-thumb with Outfit and Infit statistics is:  

“MnSq size: large enough to be distorting; MnSq > 1.5 

Zstd significance: improbable enough to be surprising. Zstd > 2.0” 
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81. What about unexpectedly low mean-squares? 

These are paradoxical! Here is a Guttman response 

string, name after psychometrician Louis Guttman. He 

proposed that the ideal response string is one where 

someone succeeds on all the easy (for that person) items 

and fails on all the hard items. The result would be the 

response string you see here. This is also the best 

possible response string for Classical Test Theory. It has 

the highest point-biserial correlation and the highest 

discrimination indexes, and results in the highest test 

reliabilities. 

 

Guttman’s ideal response-pattern is perfect for 

ordering, but not for measurement. For measurement 

we need uncertainty in the responses. The closer to the 

item difficulty, the more uncertain each person’s 

responses. This fundamental to Rasch theory. 

 
 

Guttman/deterministic. Louis Guttman, a 

leading psychometrician around 1950, 

proposed that the ideal item would be one on 

which all low performers failed and all high 

performers succeeded. It would act like a 

switch. It would have infinitely high 

discrimination. If you knew the location on 

the latent variable of the switch for each 

person, then all person responses would be 

exactly determined. 

82. So what is wrong with a Guttman pattern from a Rasch 

perspective? 

Rasch proposes that any reasonable subset of items 

should give statistically the same estimate as the full set. 

So let’s split the test high-low:  

1. According to the easy items, our respondent is a 

genius.  

2. According to the difficult items, our respondent is a 

dunce.  

A contradiction! 

The problem is that the Rasch transition zone of 

uncertain responses to the targeted items is missing. 

Of course, the Rasch measure has correctly located the 

respondent between the easy and hard items on the 

latent variable, but the response string is squeezed 

together from the Rasch perspective.  
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83. Guttman Patterns and Low Mean-squares < 0.5: 

Guttman patterns produce low Mean-Squares. 

Low mean-squares correspond to persons and items which are too predictable. They are lacking in the 

uncertainty Rasch needs for constructing measures. 

This makes the reported standard errors (measurement precisions) too small and the reported reliabilities 

(measure reproducibility) too high. In general, however, low mean-squares are not a serious problem. 

 

Small standard errors (high precision) and high reliability (high measure reproducibility, a consequence 

of high precision) are good, but only if that level of precision is really supported by the data. Here the 

reported standard errors (though computed correctly) are too small from a substantive perspective.  

A parallel situation arises in physical measurement. Suppose you weigh yourself 100 times. Then your 

weight will be the average of those weights with precision (standard error of the mean) S.E.M. = S.D. of 

your 100 weights / 10. But do you believe this high precision about your own weight? No. It is 

statistically correct, but substantively misleading. You weight varies by more than that S.E.M. during 

each day. The calculated standard error of your weight is too small, and so may mislead you about how 

precisely you know your own weight. 

84. In general, low mean-squares are not a serious problem, but high mean-squares are. 

Low mean-squares rarely lead to incorrect inferences about the meaning of measures, unless they are 

caused by constraints which invalidate the measures. 

So always investigate and remedy high mean-squares, and then re-analyze your data, before 

investigating low mean-squares. The overall average mean-squares are usually close to 1.0, so high 

mean-squares force there to be low mean-squares. 

85. So what values of the mean-square statistics cause us 

real concern? Here is my summary table from Winsteps 

Help “Special Topic” “Misfit Diagnosis ...” 

 

Here’s a story: 

When the mean-square value is around 1.0, we are 

hearing music! The measurement is accurate 

When the mean-square value is less than 1.0, the music 

is becoming quieter, becoming muted. When the mean-

square is less than 0.5, the item is providing only have 

the music volume (technically “statistical information”) 

that it should. But mutedness does not cause any real 

problems. Muted items aren’t efficient. The 

measurement is less accurate. 

 

When the mean-squares go above 1.0, the music level 

stays constant, but now there is other noise: rumbles, 

clunks, pings, etc. When the mean-square gets above 

2.0, then the noise is louder than the music and starting 

to drown it out. The measures (though still forced to be 

additive) are becoming distorted relative to the response 

strings. So it is mean-square values greater than 2.0 

that are of greatest concern. The measurement is 

inaccurate. 

Interpretation of  

mean-square fit statistics: 

>2.0 Distorts or degrades the 

measurement system. 

But be alert, the explosion caused 

by only one very lucky guess can 

send a mean-square statistic 

above 2.0. Eliminate the lucky 

guess from the data set, and 

harmony will reign! 

1.5 - 2.0 Unproductive for construction of 

measurement, but not degrading. 

0.5 - 1.5 Productive for measurement. 

<0.5 Less productive for measurement, 

but not degrading. May produce 

misleadingly good reliabilities and 

separations. 
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86. Every Rasch analyst has favorite rules for identifying 

misfit.  The Reasonable Mean-Square Fit Value is from  

http://www.rasch.org/rmt/rmt83b.htm 

 

No rules are decisive, but many are helpful. 

 

87. Close all open Facets windows  

88.  

http://www.rasch.org/rmt/rmt83b.htm
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89. K. Facets Specification and Data: The Guilford Data 

90. Let’s apply what we’ve learned to some 3-facet rating 

data.  

Launch Facets. 

Click on “Files” 

Click on “Specification File Name?” 

Double-click on “Guilford.txt” 

 

91. “Extra specifications?”  

Click on “Specification File Edit” 

 

 

 

92. Guilford.txt displays in a NotePad window. 

 

Scroll down to Data= 

 

Notice that there are alternative data files. Most are 

commented out with “;” 

 

blue box: All these data files contain the same 

observations. You can see these in option 6. 

 

red box: We will use the Excel file, “Creativity.xls”  

 

Do not edit Guilford.txt - we will make the change using 

Extra Specifications? 

 

93. Click on your Facets analysis on the Windows task bar 

 

94. Type into the Extra Specifications? box: 

Data=Creativity.xls 

with no spaces 

 

(or copy-and-paste: Ctrl+C Ctrl+V ) 

 

Click on OK 
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95. The Extra specification, Data=Creativity.xls is shown in 

the Facets Analysis window. 

 

“What is the Report Output file name?”  

- click on “Open” to accept the default value: 

guilford.out.txt 

 

Analysis begins ....  

96. Notice on your Facets analysis window screen that the 

“Creativity.xls” is imported. 

 

Facets launches Excel to obtain the responses. Excel is 

sometimes slow, so you may see the “Waiting ....” 

message.  

97. Take a look at the Guilford data in Creativity.xls 

Facets menu bar: Click on “Edit” 

Click on “Edit Excel Data” 

Excel launches and displays the data ...  

98. The data, from “Psychometric Methods” by J.P. 

Guilford (1954) are of 3 Senior Scientists (the judges) 

rating 7 Junior Scientists (the examinees) or 5 items of 

Creativity.  The observed range of the rating scale is 1-9. 

Guilford omits to tell us what the possible range was. 

So row 1 of the spreadsheet is: 

; judges examinees items ratings 

the “;” is to tell Facets this row is a comment, not data. 

Row 2 is the first data row, it says: 

Judge 1 rated examinee 1 on 5 items, 1 to 5, and the 

ratings were 5, 5, 3, 5, 3 

1-5 means “items 1, 2, 3, 4, 5” 

“1-5a” is to prevent Excel converting 1-5 into -4. Facets 

ignores the “a”. 

There are 21 rows of data, and 105 ratings.  

99. Now let’s examine the Guilford specification file. 

You may have it on your Windows task bar, if not ... 

 

Facets menu bar: Click on “Edit” 

Click on “Edit Specification” 

 

You are probably racing ahead of me, but just in case ... 

 

; starts a comment 

Title= specifies the title to print at the top of each Table. 
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100. Score file= specifies the file names to use for writing 

out score files for each facet.  

The score files contain summary statistics for each 

element in each facet.  

See Facets Help for exact details 

The Score file for Facet 1: 

 

101. Facets = specifies the number of facets in the analysis. 

We have 3 facets: judges, examinees and items. 

 

Inter-rater = specifies the facet number of the rater or 

judge facet. This instruct Facets to compute rater-

relevant statistics for this facet. For us, facet 1 is the 

judge facet, the “Senior Scientists”. 

Inter-rater = will produce this in Table 7: 

 

102. Arrange = tells Facets in what order to arrange the 

elements when they are displayed in Table 7. 

“Arrange = m” means “Arrange in measure order 

descending” so that the highest measure appears first in 

the Table. This is done for all the facets. 

“Arrange = m, 2N” means: “after doing Arrange = m, 

then  

red boxes: output a copy of Table 7 for facet 2 with the 

elements in numerical order ascending” so that element 

1 is displayed first. 

Arrange= will produce this: 

 

103. Positive= defines which facets are oriented so that more 

score implies more measure.  

In this analysis, we have chosen to do that for facet 2, 

the “Junior Scientists” who are the examinees. 

Positive and negative facets in Table 6: 

 

104. Non-centered= specifies which facet does not have a 

local origin, but is measured relative to the origins of the 

other facets.  

 

Example (not the Guilford analysis): 

Red box: shows the subjects non-centered.  

Other red arrows: the Raters and Items are centered 

 

Guilford.txt is a study of rater behavior, so we have 

chosen facet 1, the “Senior Scientist” judges, to be non-

centered, so that they “float” relative to the other facets. 

Table 6 from a large analysis: 

 

105. More specifications in Guilford.txt 

 

The next two specifications are for Table 4 of 

“Unexpected Responses” (or observations) 
 

http://www.winsteps.com/facetman/index.htm?scoreoutput.htm
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106. Unexpected= says how unexpected? “2” means “report 

responses with a standardized residual, StRes, of 2 or 

bigger in Table 4”. 

Table 4: Unexpected = 2: 

 

107. Usort= specifies how Table 4 is sorted.  

See Facets Help. 

 

108. Vertical= defines the layout for the Table 6 “vertical 

rulers” 

Zscore= is for the interaction/bias analysis in Tutorial 3 
 

109. Pt-biserial= is the point-biserial correlation or the point-

measure correlation. 

 

PtMea is the observed point-measure correlation 

PtExp is the expected value of the point-measure 

correlation when the data fit the Rasch model. 

When possible, both the observed and the expected 

values of the correlations are reported. 

Table 7: 

 

110. Model= specifies the model. The B’s are for the 

interaction/bias analysis in Tutorial 3. The ?’s mean 

“any element”. “Creativity” is the name of a user-

defined rating scale. 

Rating scale= defines the rating scale. It  is called 

“Creativity”, and it is “R9”, a rating scale with highest 

category 9. 

1=lowest is the number and name of a category, 

* ends the category list  

111. In a model specification, "?" or “$” means "any element 

of this facet". 

"#" means any element of this facet, and each element 

has its own rating scale. 

So, Fk will look like: 

Models = ?, ?, ?, R 

Fjk will look like: 

Models = ?, #, ?, R ; assuming that "j" is the second 

facet. 

Allowing each judge to have a unique 

(partial credit) rating scale: 

Model = #, ?, ?, Creativity 

 

? does not work correctly in some versions 

of Windows. You can use $ instead. 

http://www.winsteps.com/facetman/index.htm?usort.htm
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112. Labels= specifies the facet and element names and 

numbers.  

 

If you look at the Junior Scientists, you can see that the 

element numbers can be jumbled. 

 

113. Data= specifies the data. 

 

The data always have the same layout, but they can be 

files of different types. Here are the current options: 

 

Suffix Data= Format 

.txt text file (MS-DOS or Windows) 

.xls .xlsx Excel workbook: first or only worksheet 

.rda R statistics data file 

.sdata SAS data file 

.sav SPSS data file 

.dta STATA data file 

(other) text file (MS-DOS or Windows) 
 

 

114. Dvalues=  

some facet information in the data file can be specified 

once, instead of in every data line. This is time-saving. 

More to come about this ...  
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115. L. Facets Output Tables: The Guilford Report Output File 

116. On the Windows task bar,  

click on “Guilford.txt.out” 

or 

on the Facets menu bar, click on “Edit” 

click on “Edit Report Output” 

 

Table 1 reports the specifications for this analysis. The 

crucial details to check are the numbers of elements in 

each facet. If incorrect, modify your specification file. 
 

117. Table 2 reports what happened to the data. We have 3 

judges x 7 examinees x 5 traits = 105 observations. We 

expect them all to match our measurement model. 

They do. Great!  

118. Table 3 reports the estimation process. We expect the 

last iteration to have very small numbers.  

 

red box: for the largest raw-score difference, less than .5  

 

blue box: for the biggest logit change, less than .01. 

We have these. Great! 

 

For big data sets, the maximum raw-score residual can be 

considerably larger without affecting the accuracy of the 

estimates. 

 

If you want to stop the iterative process early, 

press you Ctrl+F keys together. 

119. “Subset connection O.K.” so that the measures of all the 

elements belong to one cohesive structure. We will 

discuss this in Tutorial 4. 
 

120. Table 4 appears after Table 8  

121. Table 5 shows some global summary statistics. 

For each observation: 

Cat (category) is the observation 

Score is the category after it has been recounted  

Exp. is the expected value of the Score 

Resd. is the residual = Score - Expectation 

StRes is the standardized residual  

Mean (average) is the average for the observations. 

Count is the number of observations in the analysis. 

S.D.  (Population) is the standard deviation if the 

elements are all possible elements for the facet 

S.D. (Sample) is the (larger) standard deviation if the 

elements are a sample of all possible elements (the 

population) for the facet. 

 

red box: When estimation has been successful 

we expect the mean residual (Resd) and the 

mean standardized residual (StRes) to be 0.0, 

green box: and the S.D. of the standardized 

residual (StRes) to be 1.0. 
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122. An approximate global fit statistic, a log-likelihood chi-

square is shown. Its degrees of freedom, d.f., are roughly 

(number of responses - number of elements).  

The Rasch model is a model of perfection, so we always 

expect to see significant misfit to the model in empirical 

data, as we do here: p=.0000 

 
 

 

123. Red box: Part of the variance in the data is explained by 

the Rasch measures, and, as the Rasch model predicts, 

part is unexplained. In these data, 41% is explained by 

the Rasch measures, a usual amount - even though it 41% 

looks low!  

124. Table 6 shows the measures graphically. We can see that 

there is a noticeable spread among the Junior Scientists 

(examinees) and the Traits (items) which we want. There 

is also a smaller spread among the Senior Scientists 

(judges) which we don’t usually want, but the Rasch 

measures have adjusted for. 

The rating scale, “CREAT” is shown to the right. 

Which is the most lenient judge? The column heading  

“-Senior Scientist” tells us. The most lenient judge will 

give the highest ratings. “-” means “high score implies 

low measure”, so Cavendish is the most lenient judge. 

Vertical = 2N, 3A, 2*, 1L (same as 1A), 1A, S 

 

125. Table 6.1 is a graphical representation of the measures 

we see in Table 7. It is useful when we need to picture 

the statistics for large samples. M represents the mean, 

S=1 standard deviation, and Q=2 standard deviations. 

The numbers represent elements. The numbers match 

Table 7. 

Red box: In the bottom distribution for a much larger 

dataset, there are 28 elements at “M”, the mean.  

Read the numbers vertically.   

 

 

126. M. Table 7. Measure Tables 

127. Table 7 shows the scores and measures. 

Measures are often reported in logits or other units 

unfamiliar to our audience. They often ask, “but what do 

they mean in terms of the scores I’m familiar with?” 

Green box: This is what the “Fair Average” does. It 

takes the measures and shows what they imply as ratings 

for a standard person rated by standard judge on a 

standard item. “Standard” means an imaginary element 

with the average measure of the elements of the facet. 

In this example, the data are complete, so the Observed 

Average rating is close to the Fair Average rating. But 

when there are missing data, the Fair Average adjusts for 

the missing data but the Observed Average does not. 
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128. In a practical assessment situation, different people may be administered different tasks and rated on 

different items by different judges. You encounter the difficult tasks and the severe judges. I encounter 

the easy tasks and the lenient judges. Fine! Your ability measure and my ability measure adjust for this.  

 

But then the examination authorities say “Rasch measures are great, but when we publish the results, we 

want them expressed as ratings on the original rating scale!”  

 

So we have to go from Rasch measures back to the rating scale in a way that is fair - as though you and I 

encountered the same judges and performed the same tasks. Facets does this for us by computing the 

ratings we would have received (according to the Rasch measures) if you and I had both performed a task 

of average difficulty and we were both rated by judges of average severity. This gives a “Fair Average” 

rating. 

129. Red box: In Table 7, the “Model S.E.” is the 

precision of the measure. This indicates how fuzzy 

is the location of the element measure on the latent 

variable.  

 

In everyday speech, the words “precision” and 

“accuracy” often mean the same thing, but for us 

they are different. 

Imagine arrows being shot at a target. If the arrows 

form a close group, then the archery is precise. If 

the arrows are in the neighborhood of the center of 

the target, the archery is accurate. When the arrows 

all hit the bull’s eye, the archery is accurate and 

precise. 

 

 

 
 

Measurement Precision: how exact is the location 

on the latent variable? 

Measurement Accuracy: is it the correct location? 

 

Estimation Precision (decimal places): how 

closely does our estimate match the estimation 

criteria? 

Statistics are often reported with 6 decimal places 

(high estimation precision) even though they are 

reporting only a few data points (low substantive 

precision).  

130. Precision means “how reproducible is the location 

of the measure on the latent variable with data like 

these”. It is like the gradations on measurement 

scale. It is internal to the measuring system, and is 

quantified in the standard error of measurement, 

S.E.  

The more observations of an element, the more 

precise will be the estimate. As carpenters say, 

“Measure twice, cut once!’  

Accuracy means “how well does the measure 

correspond to an external standard”. In our case, the 

external standard is the Rasch-model ideal of 

invariant measure additivity.  

If the data fit the Rasch model, then the parameter 

estimates accurately reflect the ideal additive 

measurement framework. For us, accuracy is 

quantified in the quality-control fit statistics, Infit 

and Outfit. 

131. We can obtain higher precision for an element’s measure by: 

1. More observations of the element, e.g., a person takes a longer test or is rated by more judges. 

2. Better targeting of the element, e.g., a person takes a test that is not too easy or too high. 

3. More categories in the rating scale, e.g., a 5-category rating scale instead of a 3-category scale, but 

beware of over-categorization .... which we will soon meet! 
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132. N. Table 7: Fit Statistics 

133. Green box: Guilford.out.txt Table 7.1.1 shows the 

measures for the judges.  

Blue box: Brahe (lowest Total Score) is the slightly 

most severe judge. 

Red box: But, more importantly, look at the fit statistics. 

Brahe is the most misfitting (Mean-squares > 1.0). The 

other two judges have about the same fit.  

Orange box: The average of the mean-squares is usually 

near 1.0, so a misfitting judge, like Brahe, forces the 

other judges, Avogadro and Cavendish to be reported as 

overfitting.  

 
Always investigate underfit (high mean-

squares) before overfit (low mean-

squares). Often the overfit disappears when 

the underfit is eliminated from the data. 

134. Notice also that the Infit and Outfit columns are 

similar. This is usual with long rating scales (9 

categories here) so that the operational range of 

each item is very wide.  

 

Under these circumstances, my choice is only to 

report Outfit, because it is the conventional 

statistical chi-square (divided by its d.f.) which is 

familiar to most statisticians, but please do report 

both if your audience expects to see them. 

 

Polytomous mean-square statistics have the same 

characteristics as dichotomous ones, #Error! 

Reference source not found., but are much harder 

to diagnose by eye.  

Polytomous Mean-square Fit Statistics 

 

http://www.winsteps.com/facetman/index.htm?polytomous.htm
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135. O. Table 7: Inter-rater Statistics 

136. Inter-rater= has instructed Facets to compute some 

rater agreement statistics.  

Green box: The “Exact Agreement Observed %” report 

what percent of the ratings by this rater agree exactly 

with the ratings made by another rater. the “Exact 

Agreement Expected %” reports the agreement that 

would be seen if the data fit the Rasch model perfectly.  

137. For Brahe the observed agreement is 21.4%. Is this good or bad? We would tend to expect a much 

higher agreement. But Facets provides a reference point. It reports that for these raters, examinees and 

items, the “Exact Agreement Expected %” for Brahe is 25.2%. Usually the observed agreement is 

slightly higher than the expected agreement, because most raters try to be “agreeable” with each other. 

Look at Avogadro and Cavendish, their observed agreement %’s (35.7%, 37.1%) are much higher than 

expected (25.8%, 25.3%). They are agreeing together against Brahe. 

138. Under Table 7.1.1, the agreement statistics are 

summarized. In these data, the observed “exact 

agreement” is 31.4%, but the expected agreement is 

25.4%. The judges are agreeing too well!! 

Something is wrong! 

 

139. Facets models the raters to be “independent experts”. These would produce an “exact agreement” 

percent, which is the same or slightly higher than the “expected agreement” percent.  

But many raters are trained to behave like “rating machines”. Agreement is encouraged among the 

raters, and disagreements are penalized. For these raters we expect the “exact agreement” percent to be 

much higher than the “expected agreement” percent. When the “exact agreement” approaches 100%, the 

raters are behaving the same way as optical scanners do for “bubble sheets”. The raters have become 

part of the data-collection mechanism, they are no longer a facet of the measurement situation. 
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140. P. Table 7: Reliabilities and Separations 

141. 
 

142. Under each Table 7 is a set of reliability statistics. These show the reliability of the differences between 

the measures in the facet. They indicate the reproducibility of the measures, not the accuracy of the 

measures. These reliabilities are not inter-rater reliability statistics (which show the rater similarity). 

“Reproducible” - we can expect the same number if we repeated the same data collection. A stopped 

clock is highly reproducible, so it is highly reliable.  Of course, it is reliably wrong! 

“Accuracy” - the current number is near the “true” number. 

143. “Model” means “assuming all misfit in the data is due to the randomness predicted by the Rasch model” 

“Real” (when shown) means “assuming all misfit in the data contradicts the Rasch model” 

“Population” means “assuming this set of elements is the entire population.” 

“Sample” means “assuming this set of elements is a random sample from the population of interest” 

“RMSE” means “root mean-square error”, a statistical average of the standard errors of the measures. 

“Adj (True) SD” means “the standard deviation of the measures, (Adj=) adjusted for measurement 

error”, also called the “True” standard deviation. 

“Separation” is the True SD / RMSE. It indicates how many measurement strata could be statistically 

distinguishable among the measures, if the tails of the measure distribution are conceptualized to be 

caused by outlying random noise. 

“Reliability” is the ratio of the “True” variance of the measures to the observed variance. 

“Strata” is (4*Separation + 1)/3. It indicates how many measurement strata could be statistically 

distinguishable among the measures, if the tails of the measure distribution are conceptualized to be 

caused by outlying “true” measures. 

 

144. 

 

 

This table shows the relationship between measurement variance, measurement error, and reliability. 

Error 
 RMSE 

True 
 SD 

True 
 Variance 

= True 
SD² 

Observed 
 Variance = 

RMSE² + True 
Variance 

Signal- 
to-Noise 
 Ratio 

Separation  
= True SD 
 / RMSE 

Reliability 
 = True Variance / 

Observed Variance 

Strata 
=(4*Separation+1)/3 

1 0 0 1 0 0 0 0.3 

1 1 1 2 1 1 0.5 1.7 

1 2 4 5 2 2 0.8 3 

1 3 9 10 3 3 0.9 4.3 

1 4 16 17 4 4 0.94 5.7 
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145. What does this table of separations and reliabilities 

means? Here is a picture of Separation = 2.  

Green curve: The larger curve is the conceptual “true” 

distribution. 

Black and blue curves: The smaller curves are the error 

distributions for individual measures. 

The x-axis on the graph locates the person measures on 

the latent variable.  

The y-axis is on the graph is the local density, i.e., what 

proportion of the sample we expect at the x-axis location 

(larger curve) or what proportion of observations of a 

measure with error we expect at an x-axis value (smaller 

curves).  

146. So the question becomes “How many numerically different measures can we reasonably discriminate 

within the true distribution?”  

For Separation = 2, we can see that two measures at about -1.5 and +1.5, together with their error 

distributions (the fuzziness of the measurement), matches the “true” distribution of the measures. The 

splatter around only two measures (shown by the two smaller curves) covers the whole reasonable range 

of the upper curve. 

147. A physical analogy: Imagine I have a classroom of children and must report their heights. 

The report is overdue, so I measure their heights quickly by eye. This will yield imprecise measurements 

with high uncertainty. The measures of height would have big standard errors. 

 

Question 1. How far apart must two heights be for me to be reasonably sure that the children's heights 

are different? 

Answer: Roughly three standard errors. we are comparing two measures and both have standard errors. 

So, assuming the standard errors are approximately the same, the statistical value is  

(two error distributions)*(p<.05)*(RMSE) = √2 * 1.96 * SE ≈ 3 *S.E. 

 

Question 2. In the observed distribution of heights, how many "reasonably sure" height-difference strata 

are there, assuming there are no unusually short or tall children? 

Answer: This is the "Separation", which is (True S.D. / Standard error). 

 

Practical example: 

My children have only two "true" heights: half are 1.5 meters high, and half are 1.7 meters high, so the 

true S.D. of their height measures is .1 meters. 

But when I record their heights by eye, the 1.5-meter-children have a range from 1.4 meters to 1.6 

meters, and the 1.7 meter children have a range from 1.6 meters to 1.8 meters. So the standard error of 

my height measurements is about .05 meters 

The "separation" of my children is (true S.D./S.E.) = (.1 / .05) = 2. Two strata - exactly right. 

If my standard error had been larger, the two height ranges would have overlapped and the separation 

would have dropped. I would not have been able to distinguish tall children from short children. 

But if my standard error had been smaller, there would have been a gap between the two error 

distributions. The separation would have been bigger, perhaps 3 strata, alerting me that I could have 

distinguished a third strata of children of height 1.5 meters, if there had been any. 

 

It is the same with Rasch measures and their standard errors. 
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148. For Separation = 2, notice that the peaks of the S.E. 

curves are 3 units apart. 

 

Strata: If we needed to discriminate 3 “strata”, we 

could squeeze them in. The very top (with curve peak at 

3), against the middle (with curve peak at 0), against the 

very bottom (with curve peak at -3). 

 

So, a very high performer can be discriminated from a 

middle performer, can be discriminated from a very low 

performer. But we would need to look at the empirical 

distribution of measures(in the “rulers” in Table 6) to 

see if the distribution does have long tails where those 

very high and very low performers would be located. 

Separation = 2 = 2 error distributions 

 
Strata = 3 

149. Here’s the same thing for reliability = 0.9, separation = 

3. We can see how the narrower error distributions allow 

for more different measures to be squeezed into the 

“true” distribution. 

 

Separation (True SD / Error SD) is more useful than 

reliability when reliabilities get much above 0.9. The 

maximum reliability is 1.0 so changes in reliability are 

not noticeable. Changes in the equivalent separation are 

always identifiable. 

 

Strata: we could squeeze in another S.E. distribution 

curve, by placing the peaks at -4.5, -1.5, +1.5, -4.5  

150. Decision-makers say, “We are going to use this instrument to discriminate x levels of performance.” 

We might respond, “Fine! based on the sample measure distribution, and the separation pictures, this 

instrument can do that.” Or we might say, “This test really does not have the discriminating power for x 

many levels of performance, so there will be a lot of mis-classification.” 

In language testing it used to be common (maybe it still is) to try to discriminate 10 or so performance-

levels based on a test that only has the statistical power to discriminate 3 or so levels. No one computed 

the standard errors for individual measures, so no one knew how arbitrary the classification of 

examinees was. 

151. How much reliability or separation do we need? It depends what our purpose is, but we nearly always 

want to separate high performers from low performers, so a person separation of 2, reliability of 0.8, is 

often the benchmark for practical use. But reliabilities are always computed for the current sample, 

despite the convention of calling them the “test reliabilities”. Next time the sample will be differently 

distributed, so the separation may be different ..... 
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152. Measure summary chi-square statistics 

153. There are two questions we may ask ourselves about the elements of a facet: 

 

1. Are the measures of the elements in a facet all statistically the same, except for measurement error? 

This particularly applies to raters. We want them to have the same leniency. This hypothesis is tested 

with the “fixed (all same) chi-square.” 

 

2. Are the measures a random sample from a normal distribution? This particularly applies to large 

samples of persons. If they are, we can conveniently summarize them with a mean measure and a 

standard deviation. This hypothesis is tested with the “Random (normal) chi-square”. 

 

 
 

In this example, the hypothesis that the elements have the same measure, apart from measurement error, 

has significance p=.00, so this hypothesis is rejected. 

The hypothesis that the measures are a random sample from a normal distribution has significance 

p=.39, so this hypothesis is not rejected. 
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154. Rasch Fit Statistics: Are the Measures Accurate and Effective? 

155. Let’s produce Table 7 for “Junior Scientists”, 

facet 2 in fit order, ascending: 

 

Facets analysis window for the Guilford.txt  

Click on “Output Tables & Plots” menu 

Click on “Table 7: Measures” 
 

156. “Table 7 Request” dialog box: 

Click on “All” to uncheck-mark it. 

Scroll the list ... 

Click on “2 Junior Scientists” to check-mark it 

Click on “Measure” to uncheck-mark it 

Click on “Fit order” check-mark it 

Click on “Temporary Output File” 

 

157. Here is the Table in a NotePad file. 

Let us think about what this means ... 

Orange box: Edward has mean-squares of 1.94, 

much larger than the expected 1.0. The ratings of 

Edward underfit the Rasch model. They are too 

unpredictable from the Rasch measures or 

“noisy”. 

Blue circle: Edward has a high correlation - this 

usually means “predictable” - why? 

Red box: Anne has mean-squares of .24 and .23, 

much lower than the expected 1.0. The ratings of 

Anne overfit the Rasch model. They are too 

predictable from the Rasch measures or 

“muted”. 

 

Always investigate underfit (high mean-squares) 

before overfit (low mean-squares). Often the 

overfit disappears when the underfit is eliminated 

from the data. 

158. Blue circle: our investigation! 

Hre is a plot of Edward’s ratings and the logit 

measures that are modeled to produce them. If 

you have some skill with Excel, Appendix 3. 

Excel plots from the Residual file explains how 

to make this plots for yourself. 

Blue line: a strong trend = high correlation. 

Orange circle: two observations of “2” are 

surprising. 

Overall, Edward’s the ratings are much less 

predictable (from the Rasch measures) than the 

Rasch model expects.  



 32 

159. Edward: 

1. “Outfit MnSq = 1.94”, “Infit MnSq=1.94”. 

 The “Outfit mean-square” reports primarily about observations where the combined (summed) 

measures are far from zero. 

The “Infit mean-square” reports primarily about patterns of observations where the combined (summed) 

measures are near to zero. 

 In Guilford.txt the rating scale is so long (9 categories) that the operational range of the rating scale for 

each item is much wider than the spread of the measures. Accordingly Outfit and Infit report essentially 

the same results. I prefer to report only Outfit, but some reviewers prefer Infit or both Infit and Outfit. 

 

2. “MnSq = 1.94” 

The mean-square is much greater than 1.0, so these ratings are too unpredictable. They underfit the 

Rasch model. They twice as much randomness as the model predicts.  

Ben Wright explained fit like an old phonograph record. 

When the mean-square is close to 1.0, the music can be heard clearly. 

When the mean-square is much less than 1.0, the music is muted, muffled. It loses its rich tones. 

When the mean-square is much greater than 1.0, the music is there, but so are the pops, rumbles 

due to scratches and surface noise. When the mean-square is above 2.0, the noise is starting to 

overwhelm the music. 

From the plot, we can that the data do not concur about Edward’s performance. The ratings in the 

orange circle say that Edward is a low performer, but other ratings say that he is a high performer. 

Whichever is correct, the estimated measure is a compromise, so it is an inaccurate estimate of Edward’s 

“true” measure. 

 

3. “Zstd = 2.2” in #157 - this is reporting the result of a statistical hypothesis test: “These ratings 

conform to the Rasch model.” 

4. “Zstd =  +...” - indicates that the ratings underfit (too much noise) the Rasch model 

5. “= +2.2” - this value is a unit-normal deviate indicating the probability that these ratings conform to 

the Rasch model. It is unlikely (p<.05 in Appendix 1) that these ratings are the chance outcomes of a 

Rasch process based on the estimated measures. 

 

6. “Do these data fit the Rasch model or not?” - the hypothesis test of fit to the Rasch model reports 

“They do not!”. They underfit the model: the mean-squares says the misfit is big, and the Zstd says that 

the misfit is unlikely to have happened by chance. 

 

7. “What action do we take?” This depends on the circumstances. 

A. The data aren’t perfect - but we expected that. 

B. These data underfit the model. They are too unpredictable. Is that a cause of concern for us? Yes, the 

measure of Edward’s performance (based on these data)  is inaccurate for practical purposes. 

C. If this is our first look at the data, always examine high mean-squares (underfit) before low mean-

squares (overfit). This is because the average mean-square is usually forced to be close to 1.0. So 

investigate Edward (MnSq = 1.94) before Anne (MnSq=0.24). 

D. If we consider that the ratings in the orange circle are not representative of Edward’s general 

performance, we might omit Edward from the analysis, or omit those ratings. Then Edward’s 

idiosyncrasies won’t impact other aspects of the analysis, such as Anne’s mean-square.  A later tutorial 

will show us how we can anchor (fix) the other measures at their good values, and measure Edward with 

all his ratings.  

E. If this is a diagnostic test, then the orange-circled ratings may be the most important ones. They tell 

us where to focus our remedial action for Edward to improve his performance. 
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160. And here is a plot of Anne’s ratings and the logit 

measures that are modeled to produce them. 

Anne has a high correlation and the highest 

overfit. 

 

Notice how closely Anne’s rating track along the 

trend line. They are more predictable (from the 

measures) than the Rasch model expects. 

 

161. Anne: 

2. “MnSq = 0.24” 

The mean-square is much less than 1.0, so these ratings are too predictable. They overfit the Rasch 

model. They only contain one-quarter of the randomness that the model predicts. In Classical Test 

Theory (CTT) this would be considered good. In Rasch this indicates that these ratings contain only 

24% of the measurement information that they should. These ratings are inefficient and will cause the 

reported standard errors to be too small and the reported reliabilities to be too high. But the measure of 

Anne’s performance (based on these data)  is accurate. 

 

3. “Zstd = -3.2” - this is reporting the result of a statistical hypothesis test: “These ratings conform to 

the Rasch model.” 

4. “Zstd =  -” - indicates that the ratings overfit. 

5. “= -3.2” - this value is a unit-normal deviate indicating the probability that these ratings conform to 

the Rasch model. It is extremely unlikely (p<.01 in Appendix 1) that these ratings are the chance 

outcomes of a Rasch process based on the estimated measures. 

 

6. “Do these data fit the Rasch model or not?” - the hypothesis test of fit to the Rasch model reports 

“They do not!”. They overfit the model, highly statistically significantly. 

 

7. “What action do we take?” This depends on the circumstances. 

A. The data aren’t perfect - but we expected that. 

B. These data overfit the model. They are too predictable. Is that a cause of concern for us? Yes, if it is a 

roulette wheel. But usually No if it is the performance of a child on an educational test. The measure of 

Anne’s performance (based on these data)  is accurate for practical purposes. 

C. If this is a standard testing situation, then overfit slightly stretches the measures (increases their 

range), inflates their reliability and reduces their standard errors. These are technical issues usually not 

of concern to anyone other than psychometricians. So it would require very strong external motivation 

to omit or alter this set of ratings. 

D. If this a rater training situation, low mean-squares are typical of raters “playing it safe” by exhibiting 

central tendency or trying to agree with the ratings they think the other raters will give. This is often the 

result of training which emphasizes “if you disagree with the other raters too much, you will be fired!” 

So, before being concerned about the individual, review the training material and the instructions given 

to the raters. Are they explicitly or implicitly being told to agree with each other? 

At the Olympic Ice-Skating, the organizers think that “rater agreement = more credibility”, but to 

psychometricians, “excessive rater agreement = psychological pressure to agree = loss of objectivity 

and fairness”. 
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162. Q. Table 8: Rating Scale Structure 

163. Table 8 tells us about the 9-category rating scale of Creativity. It is packed with useful information 

about the success of our data collection - information which J.P. Guilford completely overlooked when 

he wrote the chapter on rating scales in his book, “Psychometric Methods”. 

164. 

 

165. Blue box: There are 9 categories, 1 to 9. Look at how they have been “Used”, the category frequency 

counts. Do you notice anything conspicuous? Yes you do! Only categories 3, 5 and 7 have large counts. 

Perhaps the judges, the Senior Scientists, could only discriminate 3 levels of Creativity, but were told to 

use a 9-category scale. Over-categorization leads to artificially reduced standard errors, inflated 

reliabilities and poor fit to the Rasch model. 

166. Red box: We can see evidence of poor fit in the “Average Measure” column. The rating scale is 

intended to represent a series of qualitative advances along the latent variable. Each category is assumed 

to be a quantitative advance (of a size yet to be determined) beyond the previous category. So, higher 

categories should imply higher measures, and higher measures should be observed as higher 

categories. But did this happen? 

167. The “Average Measures” are the averages of the 

measures that combined to produce the observations in 

the category. We expect them to advance with category 

number. 

Our estimation process in Tutorial 1: 

Bn - Di - Rr - Ss - {Fk} →Xnirs 

Average Measure for category “j” =  

Average (Bn - Di - Rr - Ss) for all Xnirs = j 

168. In Table 8, we can see that the Average Measure for category 1 is -.86. Then for category 2 it is -.11. 

Good so far, categories and average measures are advancing together. But the Average Measure for 

Category 3 is -.36. The Average Measure has gone backwards, and so is flagged with “*”. This 

contradicts our theory about the rating scale.  

Green box: the “Expected Measure” column shows what the Average Measures would be if the data fit 

the Rasch model. We can see big differences, particularly for Category 6 (-.46 vs. .17). Something is 

seriously wrong. What is it? 

169. Orange box: Look at the category-level “Outfit MnSq” column. We expect these to be 1.0 or less due to 

dependency among the categories of the rating scale. Most mean-squares are in this range. But Category 

2, mean-square 2.7, and Category 6, mean-square 4.1, are showing considerably unpredictability. 

Another symptom that something has gone seriously wrong with the functioning of the rating scale! 
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170. Let’s look at the rating scale from a graphical 

perspective: 

On the Facets menu bar,  

Click “Graphs” 

 

 

171. The Rasch model has made as much sense of the rating 

scale as it can.  

The x-axis is the latent variable, drawn relative to the 

difficulty of the item. 

The y-axis is the probability of observing each category 

of the 9-category rating scale. 

Categories 3, 5, 7 are observed more often, so they have 

higher probability curves. Categories 1 and 9 are the 

extreme categories, so the Rasch model extrapolates that 

they are the categories most probable to be observed 

outside of the range of the data. The rest of the 

categories have low probability of being observed. 

 

If you want to know which category a curve 

represents, click on the curve. 

(Click on the plot background if the plot is 

not redrawn correctly.) 

172. On the “Graphs” window, 

Click on “Prob+Empirical Cat. Curves” 

 

Prob = Probability (as predicted by the Rasch model) 

 

Empirical = Observed (as summarized from the dataset) 

 

 

 

173. Prob+Empirical Cat. Curves: 

 

The thinner lines with x’s are the empirical category 

frequency lines, summarizing how the rating scale 

categories were used. Their colors match the Rasch-

model smooth curves. 

 

Do you see that categories 3, 5, 7 are the only high-

frequency categories?  Category 5 peaks in the center, 

where it should, but also down at the bottom - weird! 
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174. Click on “Exp+ Empirical ICC”. This will display the 

expected (Rasch-model) and empirical (what the data 

say) Item Characteristic Curves, ICCs. These show the 

average functioning of the rating scale along the latent 

variable.   

175. The solid red line is the Rasch-Model ideal ICC for 

these data. The blue jagged line is what the data say. 

The green 95% Confidence Bands are the statistical 

limits of the divergence of the empirical from the ideal, 

as predicted by the Rasch model. We can see that the 

data only just remain within the lines. There is a 

problem at the bottom end of the empirical ICC, 

matching the problem with category 5 which we saw in 

its empirical category curve.  

176. Green box and arrow: Move the slider below the plot 

to make the empirical summarizing-interval 0.10 logits. 

You will see that now the empirical blue line crosses 

over the confidence bands, which are two-sided 95% 

confidence intervals. 

 

Even at this level of summarization, the misfit in the 

rating data are apparent, suggesting that the misfit 

should be investigated in greater detail in other Tables, 

such as Table 4. Something is seriously wrong with this 

Guilford dataset. J.P. Guilford did not notice it himself, 

but we will discover exactly what it is in the next 

Tutorial. 

 

Play with the “Graphs” screen, clicking different buttons 

and different slider settings. Do you see anything 

intriguing or diagnostically useful for you?   

177.  

178. Optional Reading:  

#14 - Knox’s “Cube Imitation” Test - 

http://www.rasch.org/rmt/rmt133j.htm 

#62 - Wright & Panchapakesan (1969) “A Procedure for 

Sample-Free Item Analysis” - 

http://www.rasch.org/memo46.htm 

For a conceptual summary of what we have done so far, 

and also a glance ahead, please read “A Facets Model 

for Judgmental Scoring” -

http://www.rasch.org/memo61.htm 
 

179. Close all windows.  

http://www.rasch.org/rmt/rmt133j.htm
http://www.rasch.org/memo46.htm
http://www.rasch.org/memo61.htm
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Appendix 1. Unit Normal Deviates 

The “normal” distribution is fundamental to statistics. It 

describes what happens when events happen “normally”, 

purely by chance. The Figure shows the probability of 

different numbers of “heads” when a coin is tossed 15 

items in the red bars: 
http://mathworld.wolfram.com/NormalDistribution.html 
We can see that the overall pattern follows a bell-shaped 

curve the continuous black line. This pattern gets closer 

to a smooth line, the more coins we toss. The black 

continuous line for an infinite number of tosses is the 

“normal distribution”. 
 

We are interested in a special case of the normal 

distribution. We want the one when its mean is zero, and 

its standard deviation is 1.0. This is called the “unit 

normal distribution”, abbreviated N(0,1). Statisticians use 

the Greek letter mu, μ, for the mean or average, and the 

Greek letter sigma, σ, for the standard deviation or 

spread, so the general normal distribution is N(μ, σ). 

Look at the plot, the values along the x-axis at labeled 

“z”, these are unit normal deviates. The area under the 

red curve indicates the probability of observing those 

values. http://faculty.vassar.edu/lowry/ch6pt1.html 

68% of the area under the is within 1 S.D. of the mean, so 

we expect about 2/3 of the values we observe to be 

statistically close to the mean.  

We are usually concerned about values far away from the mean on either side (2-sided). The Figure it says 

that 2.28% of the area under the curve is to the right of +2, and 2.28% is less than -2. So, when we sample 

from random behavior modeled this way, we expect to encounter values outside of ±2 .0 only 2.28%+2.28% 

= 4.56% of the time. This is less than the 5% (in other words, p<.05) that are conventionally regarded as 

indicating statistical significance.  

The precise value of probability < .05 is  z > |±1.96| for p < .05 

and for probability < .01 is  z > |±2.58| for p < .01 

Handy table of unit normal deviates (z) and probabilities 

(p) for a “two sided z-test”, also called a 

“two-sided t-test with infinite degrees of freedom” 

 

Zstd values also use this probability table: 

z > p < 

±2.58 0.01 

±2.33 0.02 

±2.17 0.03 

±1.96   0.05 

±1.64 0.10 

±1.28 0.20 

±1.04 0.30 

±0.84 0.40 

±0.67 0.50 

http://mathworld.wolfram.com/NormalDistribution.html
http://faculty.vassar.edu/lowry/ch6pt1.html
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But, remember, just because a value is statistically significant doesn’t mean that it is wrong. We do expect to 

see those values occasionally. The question to ask ourselves is “Why now?” 

What if we don’t have a unit-normal distribution? We can 

often approximate it by taking our set of numbers, our 

data, subtracting from them their mean (arithmetic 

average) and dividing them by their standard deviation) 

(the data - their mean)/(their standard  deviation) 

  → N(0,1) 

Residuals from our data, {Rni}, have a mean of zero, and 

a modeled standard deviation of Vni
0.5

 so the standardized 

residuals {Zni} should approximate N(0,1) 

{Rni / Vni
0.5

} = {Zni} → N(0,1) 
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Appendix 2. Chi-square, mean-square and degrees of freedom 

We talked about the unit-normal distribution in 

Appendix 1. And have discovered that the 

standardized residuals {Zni} approximate N(0,1), the 

unit-normal distribution. So, what happens when we 

accumulate them?  +  

Add two unit-normal distributions: 

N(0,1) + N(0,1) = N(0, 2) 

The average stays the same, but they spread out 

more. The combined distribution has twice the 

variance of .a unit-normal distribution: 

 

But what if we square the unit- normal distribution? 

N(0,1)
2
 is called the “chi-square distribution with 1 

degree of freedom”, shortened to . It is the black 

curved line on the plot. Its mean is its degrees of 

freedom, indicated by the black vertical line going up 

from 1. 

We can add two of these N(0,1)
2 
+ N(0,1)

2 
= . 

This has two degrees of freedom, d.f., and is shown by 

the blue curve on the plot. 

 

We can keep adding more. So, when we have added 

“k” squared (unit normal distributions) we have a chi-

square distribution with k d.f., χ2
k. It has a mean of k 

and a variance of 2k, so a standard deviation of √ (2k).   

Since the mean of chi-square statistic is its d.f., it is 

convenient to divide the chi-square by its d.f., so that 

its value can be compared with 1.0. This makes 

scanning a Table of fit statistics much easier than 

when chi-square statistics with their d.f. are reported. 

Mean-square = χ2
k / k 

Mean-square << 1 is over-fit, dependency, over-

parameterization, over-predictability 

Mean-square >>1 is under-fit, noise, misfit, lack of 

predictability 

Facets reports the significance (probability) of a 

mean-square as a unit-normal deviate (Zstd). 

ZStd = Wilson-Hilferty (mean-square, d.f.) 

see http://www.rasch.org/rmt/rmt162g.htm 

http://www.rasch.org/rmt/rmt162g.htm
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Appendix 3. Excel plots from the Residual file 

Here is how you can produce Excel plots from the 

Facets “Residuals file”. This needs some skill with 

Excel. 

 

Facets Analysis window 

Click on “Output Files” 

Click on “Residuals/Responses file” 

 

“Residual output file Request” dialog box 

Click on “Output to Excel” 
 

Excel worksheet: 

Click on the worksheet 

“Select All” Ctrl+A 

“Sort and Filter” 

“Custom Sort” 

Top row is headings 

Sort fields:  

The facet number you want, ascending, e.g., “2” 

The x-axis value you want, ascending, e.g., “Logit” 

OK 

The worksheet is sorted  

Scatterplot: 

 

“Series name” is the element label you want in facet 2. 

x-axis values are the “Logits” (or whatever) for the 

element you want in facet 2 

y-axis values are the “Obs(ervations)” (or whatever) 

for the element you want in facet 2 

 

Excel produces a plot 

 

Use Excel tools to customize your plot. 

 

Be exuberant! With a little time and talent, this 

becomes fun. 

 

 

 

 


